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Prior to the grant period 5/15/82 5/14/83, the efforts of our group

concentrated on charge-exchange schemes to obtain lasing in the X-ray region.

During the period 5/15/82 - 5/14/83, the efforts of the group were directed

towards alternative schemes, such as the free-electron laser, to obtain X-ray

lasing. Possible uses of X-ray lasers in novel areas, such as in nuclear

--, phenomena, were also investigated, which led to rigorous analyses of some

earlier work concerning nuclear beta decay, as well as careful considerations of

intense field behavior of quantum systems.

The following report consists of two parts. The first part summarizes the

initial work concerning the possibility of scaling the free-electron laser to

X-ray wavelengths. The second part summarizes the work dealing with the

possible uses of X-ray lasers in nuclear phenomena, and with correct

descriptions of quantum systems in intense fields. The papers which detail

these results either in published or in preprint form, are reproduced as

appendices.

II . SCALING OF FREE-ELE± 9IEN ASER 10 X-RAY WAVU12IMS

A difficulty in extending the operation of lasers based on atomic

transitions down to X-ray wavelengths is the short lifetime of excited states,

due to radiative and Auger transitions. This difficulty is not present in the

case of free-electron lasers (FEL), since the energy source for the lasing is

stored stably (for hours, in the case of storage rings) in the form of electron

kinetic energy. V)oreover, the FEL is intrinsically a swept-gain device,

normally operating with overlapping picosecond pulses of electrons and laser
r7-

radiation. Thus, a gain length of many meters is possible in a mostly empty

cavity, since the gain pulse (electrons) moves at nearly the same speed as the

laser pulse. The FEL wavelength is continuously tunable by changing the

electron energy, and so can be matched to available Bragg crystal resonators.

.o.
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Two possible ways to achieve short-wavelength operation of the FEL have

been considered. One is to use high-energy (GeV) electrons in conjunction with

a long conventional wiggler (or a G'J microwave field in a waveguide). The

second is to use low-energy (10 MeV) electrons passing through a

counter-propagating high-poer infrared laser pulse. The first regime can iive

very large gain (operation without a resonator is a possibility), but requires a

wiggler tens to hundreds of meters ion length, unless a good quality Bragg

resonator can be developed. Electron beam quality is the most inportant

limitation. Storage-ring operation may be feasible down to about 60 A. Shorter

wavelengths (down to a few A) are possible in principle using a linear

accelerator, but suitable accelerators have not been developed.

The second regime using a high-power laser pulse can give moderate (40%)

gain. In this regime the quantum recoil can be as large or larger than the

homogeneous bandwidth, so that quantum effects are definitely important. The

quantum effects, though physically interesting, are in general adverse, reducing

* .:the gain and limiting the saturation power to about one photon per electron.

The correct gain can be calculated using semiclassical theory (quantizing the

electrons, but not the field). Another important feature of this type of FEL is

the slowing of the electrons as they pass through the high-intensity beam waist

of the counterpropagating Gaussian beam. This slowing is due to transfer of

electron kinetic energy into transverse motion (mass-shift effect) and spreads

the gain over a bandwidth dependent on the pump laser power (but not on the size

of the beam waist). In general, electrons in an appropriate energy range are

resonant at one point entering and at one point leaving the focal region, and

interference between radiation emitted at these two points gives a rapidly

oscillating homogeneous spectral lineshape. The highest peak of the lineshape

a.'.. curve is at the low-frequency end of the curve, and corresponds to electrons

which are resonant at the beam waist. The frequency of this peak depends on the

P D- .°..a.. . .... *° a*.%** -
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power of the puMp laser. A difficulty with this regime is to devise a cavity

for injecting and recirculating the terawatt pump pulse and to keep the

electrons resonant for many passes if the pump pulse is decaying.

The work summarized above is described in the paper by J. Goa-Bauachloche,4.- 

o
.T. Moore and 14. 0. Scully, "Prospects for an X-Ray Free-Electron Laser", in

Free-Electron Generators of Coherent Radiation, edited by C. A. Brau, S. F.

Jacobs and M. 0. Scully, Proc. SPIE 453, 393 (1984). It is reproduced in

Appendix I.

III. NUCLEAR SPSCnPY WITH X-RAY LASERS

One can reasonably expect that X-ray lasers when available, will have a

strong impact on nuclear spectroscopy, similar to the impact that optical lasers

have had on atomic spectroscopy. It is particularly interesting to anticipate

the possibility of modulating nuclear beta decay or orbital electron capture

rates by means of an X-ray laser. This possibility was analyzed for a simp!-3

case of a parent nucleus (Z,N) decaying into a daughter nucleus (Z ± 1, N ± 1),

where the parent nucleus has just two states, a (lower) and b (upper), and the

daughter nucleus has just one state c. Both a and b are assumed to be unstable

with respect to weak decays. The X-ray laser frequency is assumed to be tunable

to the level separations of a and b. The situations similar to the highly

.4 forbidden decay of 1291 to a low lying excited state of 129Xe. The physical
--* J 53 54

picture is exactly analogous to Raman scattering. The results of the

calculation show that the modulation of the decay rate is extremely sensitive to

the tuning of the laser frequency to the a - b transition frequency, which has

natural quantum limits arising from the spontaneous decay of the states, as well

as from internal conversion processes. If one can achieve tuning on the order

of AW/W , 10-13, powers on the order of 1014 W/cm2 are needed in order to see

observable effects in the decay of 1291. This calculation is described in the
53

paper by W. Becker, R. R. Schlicher, M. 0. Scully, M. S. Zubairy, and M.

",_ . - . . . . . . . .
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Goldhaber, aiuclear Spectroscopy with X-ray lasers", Phys. Lett.131B(1983) 16,

which is reproduced in Appendix II.

One interesting result concerns scattering processes or decay of charged or

neutral pointlike particles in a laser field idealized by a plane wave of

arbitrary polarization. The wave functions of the charged particles are then

Volkov solutions. In the paper by W. Becker, G. T.bbore, R. R. Schlicher and M.

0. Scully, "A note on total cross sections and decay rates in the presence of a

laser field", Phys. Lett. 94A (1983) 131, which is reproduced in Appendix III,

it is shown that in the quasiclassical limit (h P 0), the differential cross

section or decay rate can be represented as an integral with respect to time

over an instantaneous cross section of decay rate which depends on the value of

the laser field at a given time. Since this instantaneous rate is, in

principle, a measurable quantity, it must depend on the canonical momentum Pi of

the i particle and on the laser field 1(t) only via the mechanical momentum
,. .4,
wI (t) = pi - e.A(t). If the differential rate is integrated over the final

momenta in order to obtain the total cross section of the total decay rate, the

dependence of the final rate on the laser field is completely eliminated by
94.

changing the integration variable from _" to - e.(t). Consequently, the
1i 1 1

total decay rate of a neutral particle is unaffected by a laser field, and a

charged particle, if stable in vacuum, remains stable in a laser field. The

quasiclassical approximation breaks down if the strength of the external field

becomes comparable with the critical field strength E -- 2 c3 /et.lO6 Volt/oan,
crit

which is out of reach of present lasers or those anticipated in the near future.

The preceding considerations can be extended to nucleons bound in a

self-consistent potential when the nucleon-laser field interaction is

.41 negligible. Given the energy of a typical laser quantum of 1 eV and a typical

nuclear level difference of 1 MeV, this is an excellent approximation. In this

case it can be shown again that, in the quasiclassical limit, total decay rates

, % ° * 9 ~ * * ' - .. ~ . . . . - - - .



-- 5E are unaffected by laser fields which are weaker than-the critical field. Decent

claims that forbidden nuclear beta decay can be drastically enhanced by an

intense radio frequency field are contested. This work is described in Appendix

IV, which is a preprint entitled "A no-go theorem concerning the enhancement of

nuclear decays by intense radiation fields", by W. Becker, R. R. Schlicher and

M. 0. Scully (submitted for publication in Phys. Lett.).

. At the 1983 NATO Advanced Study Institute in Madrid, Spain, M. 0. Scully

gave seminars on the subject of allowed nuclear beta decay in intense laser

fields. The notes for these lectures were prepared by R. R. Schlicher, W.

Becker and M. 0. Scully and are reproduced in Appendix IV. The notes cover

topics such as total decay rates and differential electron energy distributions

of nuclear beta decay in the presence of a laser field. The empasis is on the

classical versus quantum mechanical description, questions of gauge invariance,

and the fact that the classical description is sufficient for a much wider range

of parameters than one might initially assume.

C, -
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Prospects for an X-Ray Free-Electron Laser

Julio Gea-Banacloche, Gerald T. Moore and Marlan 0. Scully

Institute for Modern Optics, Department of Physics and Astronomy.0 % rUniversity of New Mexico, Albuquerque, New Mexico 87131

Abstract

We present an overview of the regimes in which operation of an x-ray free-electron laser
(FEL) may be feasible, including discussion of static and electromagnetic wigglers, quantum
recoil, high-gain operation, mass-shift broadening, and electron beam quality.

Introduction

The free-electron laser is a swept-gain laser which offers unique possibilities for
scaling to short-wavelength operation. Atomic charge-exchange swept-gain devices''2 which
have been proposed for operation at x-ray wavelengths are limited by rapid spontaneous decay
of the upper lasing level. By contrast, energy input to the FEL is in the stable form of
electron kinetic energy, and the electrons themselves (not just the gain) propagate at
nearly the speed of light. No atomic nuclei or bound electrons are present to complicate
the physics (except in the resonator materials).

We shall consider here possible regimes for an x-ray FEL lasing at the fundamental
frequency . a 2cy 2 k or * 4cy 2 ki, where y, is the longitudinal Lorentz factor of the
electron beam and Iq Jk i ) is the wave vector of the static (electromagnetic) wiggler.
Generation of higher harmonics 3 " of W is another important mechanism for producing short
wavelengths, but will not be treated in this paper.

Because available resonators for x-rays are of poor quality, it is necessary to havelarge gain per pass to obtain lasing. If the gain is sufficiently large, one can dispense

with the resonator altogether and lase by amplified spontaneous emission (ASE). It is not
known how much gain is required for an FEL to lase by ASE. This mode of operation would
have advantages, since the repetition rate of electron pulses (and wiggler pulses in the
case of a counterpropagating electromagnetic wiggler field) could be arbitrarily low. There
would also be no problem of resonator alignment. The coherence time would be limited to the
slippage time L/2ys2c, where L is the wiggler length. In other words, the coherence in
terms of x-ray periods could not exceed the number of wiggler periods. Probably one could
not do much better than this using a low-Q resonator.

We shall consider two types of wiggler, the uniform wiggler and the Gaussian beam. The
uniform wiggler could be a conventional permanent-magnet or bifilar-helical type. It could
also be a counterpropagating electromagnetic wave contained in a wave guide. The latter
might be less expensive, particularly if one needs a very long wiggler. In either case the
wavelength X_ or xi a 2xA is on the order of centimeters. To obtain x-rays from such a
wiggler, the electr en rgy must be in the GeV range.

The Gaussian-beam wiggler uses a counterpropagating focused Gaussian beam from a
high-power infrared laser as the wiggler field. Because X. is small, the electron energy
need only be on the order of tens of MeV. The interaction length is limited both by the

-' Rayleigh range ZR and the infrared pulse length. Moreover, slowing of the electrons in the
vicinity of the beam waist is the dominant source of homogeneous line broadening for a
powerful (terawatt) wiggler field. Quantum recoil of the electrons is also typically
important for this type of FEL.

Low-Gain Uniform Wiggler

Let us now consider the uniform wiggler in detail. The quantity of most interest is the
small-signal gain. We first evaluate the gain per pass G assuming G << I. Then we
generalize to the large-gain regime G >) 1. For the sake of definiteness, we assume a
static wiggler. We neglect pulse effects, assume the x-ray laser beam to be monochromatic,
and account for the detuning of electron energies E from resonance by the usual detuning
parameter ., defined by

7O E • McZ'. 0 &Al2k q) I

Here m- m is the electron mass multiplied by a mass-shift correction given by

".. -*. ".. .-. . .. . .- .- " ".°, ." -. -% - .. %' -* % " . . . ' . ". ..% . .' .. . ... ..'. .' . .' . "... -'. ..'. . .- .' . •. .'..... ..'



" - I (e /mck q) 2  ( 2)

where is the RMS magnetic field. in practice we are interested in cases where . is at
most a few times unity.

if we postpone for now the question of emittance, there are three detuning widths
governing the expression for the gain. First, there is the homogeneous transit-time
broadening with bandwidth 2w/L. Second, there is the inhomogeneous broadening U
characterizing the width of the normalized electron energy distribution f[i). Third, there
is the quantum recoil 2q undergone by electrons when they emit an x-ray photon.

The scaling of U is different for linear and circular accelerators (or storage rings).
For linear accelerators the spread 6E is determined mainly in the initial part of the
accelerator. With care one can accelerate the electrons to high energy without increasing
6E. From Eq. (1) we see that

2k _
U - 2 E q 6E (4r)2 (3)

Mc
2 y NCZ s

The value of 6E depends on the particular accelerator, but probably the minimum value one
could obtain is

5

8E = el/4r0c s mc
2 (1/17,000 A) (4)

where I is the electron current. This limit comes from the Coulomb repulsion of the
electrons. The energy spread in the Stanford superconducting LItAC is about 100 times
larger.

In a storage ring the dominant energy spread 6 is due to noise associated with synchrotron
radiation and gets larger at higher energies. One has approximately

6E - (h/2mcp)l (E 2 /mc 2 )

'I" where o is the bending radius of the ring. Combining Eqs. (5) and (1) yields

U w 2v(hE/mcO)h A A (6)
s q

The fact that Eq. (6) scales as k suggests that a storage-ring x-ray FEL is impracticable
if s is too small, since the maximum L for homogeneously broadened operation will scale as
Ass . Our estimates indicate a minimum A of about 60 A. The storage ring seems an excel-
lent option for As of 100 A or greater. With a linear accelerator it may be possible to
scale X down to 5 A or less.

The quantum recoil h s when expressed in detuning units becomes

2q a (8,r2 2 h/lc) A (7)
s q

In the small-gain, small-signal regime the gain may be written as G a Cr, where

C . 31B- 2  
3. "!

C . C X5 S q -

2 ,!i~m * (9)o

.1

-qj0

r L -i6:
2  [sin :AL/2 

2

a iJ: =
(10)

We have used th( -nls upshift condition to eliminate explicit reference to , in Eq. (8).
I is the current w)t in Lhe laser mode area '. The coefficient is one for 'I helical

. wiggler and a well '.nown 3 difference of Bessel functions for a linear wiggler. Equation (9)

[, "'. ...... -, .....................................• . '...,•" ." .m % .,,, ' .. _
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expresses r as the difference between the forward and reverse quantum processes. This
difference is replaced by a derivative with respect to u in classical treatments of the FEL.
This replacement is sometimes, but not always, justified for the x-ray regime.

We may distinguish six regimes depending on the relative sizes of the homogeneous,

inhomogeneous, and quantum widths, as shown in Table 1.

As an example, let us consider a helical wiggler with the parameters of the Stanford
wiggler, except that it is longer, and use this wiggler to generate 5 A radiation. The
system parameters we use are shown in Table 2.

""_Quantity Symbol Value

S2q < U < 21/L, r - L 3  
Wiggler wavelength 3.2 cm

2q < 21/L < U, r - L/U2  Magnetic field Bq  .24 T
U < 2q < 2w/L, r - 0 Mass shift . 1.512
2w/L < 2q < U, r - L/UV Laser wavelength A 5 
U < 2n/L < 2q, r - L2/q Electron energy ES 3.554 GeV
21T/L < U < 2q, r - L/qU Current I 10 A

_ _ _ _ _Electron beam power El/e 3.564 x 1013W

Laser mode area .16 mm-
Table 1

Table 2

With these parameters we calculate a homogeneously broadened gain of unity at L = 81 m. If
we take the inhomogeneous broadening to be given by Eqs. (3) and (4), and we use Eq. (7) for
the quantum recoil, we calculate 21/U - 1.9 x 10 m and 7/q = 2.3 x 104m. These correspond
to the wiggler lengths at which the homogeneous broadening would equal the inhomogeneous
broadening or the quantum recoil respectively. We conclude that SE could be more than three

- * orders of magnitude larger than the value given by Eq. (4) before inhomogeneous broadening
begins to affect the gain.

So far we have merely assumed that X = 3.2 cm without justifying whether this is close
to an optimal value. We can get a moreq global picture of the situation on a log-log plot of
L versus Aq, as shown in Fig. 1. Here the point of unit gain at ' = 3.2 cm, L = 81 m is
marked by an X. The two lines with slope 3/2 indicate the transitions where -/L = q and
21/L = U. If we hold B and : constant, and neglect minor effects due to mass shift, we can
generate a curve along which G = 1 by using Eq. (8) and Table 1. This gives the three-
segment solid curve in Fig. 1. Alternatively, if we assume that the mode area : is governed
by diffraction of the x-rays, then Z - AsL and we generate the dotted curve in Fig. 1. We
can generate curves along which the gain has other values by parallel transport of these
curves along the transition lines. These curves of constant gain are invalid if Aq becomes
too large. This is because the mass-shift corrections then become substantial and because
the wiggle amplitude may exceed the assumed mode size.

We can infer from Fig. 1 that it is best to choose conditions close to the transition
lines, since L is minimized there. The choice = 3.2 cm gives us some latitude if E is
larger or if we want to increase L further to get more gain. We also see that it is very
disadvantageous to decrease _ to operate in the inhomogeneously broadened regime. The main
point in trying to use a tera~att infrared laser as a wiggler is simply that the magnetic
field one can generate is much larger than in a conventional wiggler.

Hiah-Gain Uniform Wiggler

The classical cold-beam small-signal equations for the FEL have been published
previously.' The extension of these equations to include inhomogeneous broadening is
straightforward. The extension to include quantum recoil is too lengthy to derive here, but
can be done by analyzing the coupled Maxwell and Xlein-Gordon equations. The result,
itself, is very simple. In the cold-beam limit the equations take the form

.'-. IlB% " -iWoZ

dEs/J: 1 , L". e K , (11)

'SS

dK, (12)

0

.•-*.*'.' °'.. .. '~.%*.'*'***'5'*.
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Figure 1. Curves of constant gain on a _ _(m)

log-log plot of wiggler length L versus L(m)
wiggler wavelength k provide a convenient
global picture of re4ions where operation of 106 2 U
a short-wavelength FEL may be possible. in
this figure we fix the laser wavelength, the 

L /

wiggler magnetic field, and the current at 106 \ \
the values given in Table 2. The point I

. marked X corresponds to the unit-gain 104  -2q
example discussed in the text. The energy L
spread is held constant at 300eV, INHOMOGE
independent of the electron energy. The 102 NEOUS
quantum recoil in this example exceeds the
inhomogeneous broadening, and the two 1.
parallel lines of slope 3/2 indicate the I/ HOMOGENEOUS
transitions where these respective widths
equal the homogeneous broadening. Using Eq. 102
(8) and Table 1, and assuming the laser mode
area 1 is constant, we construct the 10-4_
three-segment solid curve along which G = 1.
The slopes of the three segments (from right
to left) are 1/6, -1/2 and -5/2. By IO "6 -

parallel transport of this curve along the
transition lines, we can generate curves 10-.
along which G has other values. If G is
small, then G-A 4 at the transitions. The
value of G on a given curve scales as B2I/.. 10, , ,0,
We see that it is optimal (in terms of
minimizing L) to operate near the transition 10 8 10"6 j0-4 1O"2  1 102  q W

% lines. Also, it is disadvantageous to
choose A too small, unless one can
compensae by increasing the wiggler field. The dotted curve is generated by taking
tIs A SL, as is appropriate if the mode area is limited by diffraction of the x-ray Deam. In
this case the segments of the curves of constnt gain have slopes 1/4, -1 and -- , and tne
gain along the transition lines scales as kq 5/.

dK1  e
2
en eU0Z

dz'2 e E5 - q2K (13)

Here E s , K2, and K, are the laser field, the density-bunching amplitude, and the
velocity-bunching amplitude. The last term in Eq. (13) is the quantum correction, and - is

.a - the velocity detuning from resonance. The quantum correction arises from an interference
between probability amplitudes with and without the photon emission. In the small-gain
limit Eqs. (1l)-(13) can be used to derive (8)-(10) in the case f(P) = 5(j - -j). However,
in general the solution of Eqs. (1l)-(13) consists of three exponential mudes having the
spatial dependence exp (Az), where 6 obeys the cubic dispersion relation

0[(3 + iU 0 _ U)
2 

+ q 2 = iC

In Eq. (14) we have generalized to the case where f(ij) is not a 6-function, but is a
Lorentzian of width U (HWHM) centered at u- .. At most one of the roots of Eq. (14) has a
positive real part, and the corresponding mode will dominate near the end of a sufficiently
long wiggler. At the entrance of the wiggler the three modes contribute about equally in

order to satisfy the initial conditions K,(0) = K,(0) = 0. Figure 2 shows the growth rate
, 2 Re(d) for q = 0, U = 0 as a function of P. We see that maximum aain is obtained on

resonance, where

G exp(5
2 C 3 

L)

For the parameters of Table 2 we calculate a gain per pass of 1000 if L - 276 m. This :iVht
be enough to lase without a resonator. A conventional wiggler of this lenath would oe very
expensive, but one might be able to instead use a microwave confined by a wavequide.' The
microwave power required would be about I GW, and the minimum microwave pulse length needed
would be 2L - 552 m, so that the microwave pulse energy would be about 1.8 k!. Sucn
microwave powers are obtainable and can be propagated in a single wave-guide rode.
Microwave pulse lengths obtained so far at this power are a bit short of what we would like.
Note that the slippage time L/2v 2c is only 1.44 x 10 sec.

S,. . ... .... .. . ' -, " - . -. , -. .. ... . . . .... - .
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2 Re(/) 2 Re ()

2-
1.5

1.0

0.5
_____ ____ ____ ____ ___ 1/3 u---/C1," :" 'a oI 2 3

-15 -10 -: 0

Figure 2. The gain coefficient 2 Re(S) Figure 3. The gain coefficient 2 Re(a)
for the exponentially growing mode is is shown as a function of inhomogeneous
shown as a function of velocity detuning broadening U for the optimal detuning
mo, neglecting quantum recoil and w0 - U/3d. Quantum recoil is neglected.
inhomogeneous broadening.

The effect of a Lorentzian inhomogtneous broadening of width U (again neglecting q) is to
shift the optimal detuning to u0 = 3-:U and to reduce the gain, as shown in Fig. 3.

In Fig. 4 we show 2 Re(s) for the case where the inhomogeneous broadening U is set equal
to zero, but the quantum recoil q is taken into account. If C < q3, then the gain is peaked

I% near = q. If C becomes larger than q 3, then 2 Re(s) approaches the classical result
% . given in Fig. 2, but continues to have a sharp cut-off on the negative, as well as positive,

end of the detuning range. The quantum recoil reduces the maximum of 2 Re(E) below its
*classical value. For the parameters of Table 2 this is a very slight effect, since

C/q3 = 2.7 x 106.
2 Re (1)

c 1/3

Figure 4. The gain exponent (in 1.0
units of C') vs. the detuning
(in units of q) for several
cases in the quantum-mechanical
regime. Solid Line: c/q

3 - 1.

Dashed line: C/q3 =.1.
Dash-dot line: C/q = .01.

0. AJ/q
-I 0. I. 2.

We expect the EEL to saturate when the density bunching amplitude K 2 (z) becomes of the order
of unity. From this condition we can derive the saturation power

P c (16)
sat 16, 2

For the above numerical example we calculate P at= 1.7 MW.

*: 4Gaussian-Beam Wigqler

Infrared lasers such as CO 2 or ld-glass can generate very large electromaanetic fields,
which suggests that we consider high-power pulses from sucn lasers as wiggler .ields for an

x-ray FEL." Since k is short, one needs relatively low electron energies (tens of ,eV).
; The interaction length is limited to half the pulse length of the infrared (pump) laser,

since the electrons and pump field are counterpropagating, each at nearly the speed of
light. Moreover, the interaction length is limited to a value on the order of the Rayleigh
range Zit by diffractive spreading of the pump field. In the present analysis we take the

. pulse length infinite for simplicity and only take into account the diffractive spreading.
"P Then the on-axis pump field is of the form

42.
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A I A exp[-iw i(t + Z/c)] (17)Aq:t l-I-i./:R1

The wiggler field is therefore tapered. The electrons will be slowed up in the vicinity of
the focus, where more of their energy gets transferred into transverse oscillation. This
results in greater hom9geneous broadening than for a uniform wiggler. Electrons within the

.4' homogeneous bandwidth 4ill in general be resonant (move at the same speed as the
ponderomotive potential) only at one point entering and one point leaving the focal region.
The electron slowing is a consequence of the variable mass shift. Even though ' - I will
normally be very small for the Gaussian-beam wiggler, the cumulative effect over the many
wiggler wavelengths within the interaction region can be large. It turns out that the size
of the effect is characterized by a parameter c depending only on the power Pi in the
pump field,

" - (Ze2 /,reCM2c5 )p (18)

For a terawatt beam this gives c a 913. Let us specify that the energy-detuning 4 be zero
for electrons which at z - ±- travel at the speed c(k s - ki)/(ks + ki) of the ponderomotive
potential. Then the homogeneous bandwidth for large e is ppproximately 0 < 4ZR < .. The

%. function A(p) in Eq. (10) is replaced by
-%

A4 ) A1 expf-idz 1 ic arctan(:/:R)] (19)

Also, the constant C in Eq. (8) can be written in terms of e as

"'C = el c
Cs. (20)

2c 3cr0 mys3y R

The two points of stationary phase in Eq. (19) lie at z = ± ZR(C/UZR - 1) , and A is
approximately a sum of contributions from these two points. The interference of these two
contributions makes IA.( )I2 a rapidly oscillating function of L if c is large. A graph of
this function for 92 is shown in Fig. 5. The width of the large peak on the right side
is approximately 2e4 3/ZR. It is possible to express .(w) exactly in terms of Whittaker
functions.! 1 An approximate expression in terms of Airy functions which is valid near
U - C/Z, (that is, around the main peak on the right side) is

I A u) I'
ZRt

2

Figure 5. The mass-shift broadened
line-shape T(i,) as a function of 0.5
energy detuning. THe main peak
on the right (centered at about
U /~ corresponds to a

detuning such that particles are
resonant near the focus of the

-"'" Gaussian beam.

."-" J°50HUZ R
0 50 100

-R"" ] ) 2  I - Ai- (21)

where Ai(x) is the Airy function.

As becomes less than c/Z,, the function I.'(Ij)I becomes more and more rapidly
- * oscillating. In cases where the inhomogeneous broadening is large compared to the period of

these oscillations, we can average over the oscillations to obtain (in the stationary-phase
approximation)

.. . .
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IA(A.)1 2 - (2,ZR2/C)L"R (I - Is (22)

Contributions to IA(U)I 2 near u 0 0 come from z points far away from the beam waist. In
practice such contributions are excluded by the finite pump pulse length.

Clearly there are a number of possible operating regimes, depending on the relative sizes
of U and 2q, compared to 2cf z

R and E/ZR. The most favorable case is one in which all the
electron energies are contained within the main peak on the right of the gain curve (see
Fig. 5), and where the Compton recoil is of the same order as the width of that peak, so
that the absorption process is well separated from the emission process (with no electrons

* -.. contributing to the former). In other words, we require

< 2. 2q .(23)

where for an electromagnetic pump pulse of wavelength Ai 2q is given by

.2q - 32-21 X -% X (24)

% (This corresponds to Eq. (7) with A. 21 ). Under these conditions, using Eq. (21), we
.. . m s i

have 1 q

4 R2 .iz R- (25)

4 and

Ga -C A x 0.29,
ms -* (26)

Zc2r0 zhl

where we used Eq. (20) and the fact that the maximum value of Ai 2 (x) is 0.29.

Once the wavelength of the pump is chosen, the value of the ratio e /ZR is limited byr
the condition (23). Recall -that c is proportional to the power in the pump pulse and ZR is
proportional to the pulse length. Increasing ZR helps to increase the gain, according to

% Eq. (26), but it also reduces the width of the gain peak, and eventually one ends up in the
inhomogeneously broadened regime.

%' A serious limitation to the minimum achievable energy spread comes from Eq. (4), which

gives the difference in the kinetic energy of the electrons at the edge and the electrons on
the axis of an unneutralized beam. The inhomogeneous width resulting from this effect is

given by

U % 16W A A (1/17.000 A) (27)

Note that I here is not necessarily the total current, but only the current through the
laser mode area Z. It seems as if one could make this very small by making the laser mode
area very small (hence decreasing I while keeping I/E constant). In reality one is limited

O here too by the fact that the electrons have some transverse velocity and if Z is very
small, they might drift out of the interaction volume and contribute little to the gain. A
measure of this transverse velocity spread is provided by the emittance of the beam.

Without dwelling on the details, we present in Table 3 some optimal values for two
possible cases: one in which the pump pulse is a 1012 W pulse from a tld:YAG laser at 1.1
p'm, and one in which it is a loll W pulse from a CO2 laser at 10.6 um. In both cases we
assume operation at x s 5.7 A. We have chosen this wavelength because of the possibility

* at this wavelength ofsbuilding a reasonably good resonator using Bragg diffraction from Ge
crystals. 0 We take the length of the pump pulse to be roughly equal to the Rayleigh length
to obtain efficient coupling.

The C02-laSer-pumped case appears to be more favorable, except that the relative energy
spread is rather small. The absolute energy spread, however, is the same in both cases, and
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Pump Parameters
Pump wavelengt ii 1.1 m 10.6 um

Pump power Pi 1012 watts 1011 watts
(c a 913). (c a 91.3)

Rayleigh length ZR 4.4 ass 6 cm
Total pulse energy Pi(2ZR/c) 30 Joules 40 Joules

Electron Beam Parameters
Electron beam energy E 11 MeV 34 Mey
Normalized emittance 5.2 x 10 -6 m rad same
Peak current density 1/1 10 MA/cm 2  1.6 MA/cm 2

Peak current (total) 9 kA 4.7 kA
Energy spread 6E/E 2 x l0 6 x 10 .

Electron beam cross section 9 mm 2  29 mm 2

Laser mode area 7x10" 10 m 2  4.4x10g9 m 2

Gain 0.4 0.4

Table 3

equals 2.4 keV (equal to the Compton recoil at the wavelength considered). The normalized
emittance has been chosen equal to that of the Stanford FEL experiment. A smaller emittance
would help lower the requirements on the total current. Note in this respect that the total
peak current across the laser mode area is in both cases only about 70 A, so that many I
electrons are being *wasted". As mentioned before, this is because one needs to keep the
electron beam area large so that it won't spread too fast, given the emittance we have
assumed. The need for high current densities, on the other hand, seems unavoidable, as may
be seen from Eq. (26).

The situation is, as one might expect, more favorable for longer x.. As a final example,
we give some figures for operation at 100 A, using again a terawatt pulse from a Nd-YAG
laser. In this case, we increase ZR over the value given in the previous example to satisfy
Eq. (23). With the value Z - 1.74 cm (corresponding to a total pump pulse energy of 120 3)
one gets a gain of unity (lh0%) for a current density of 21 kA/cmZ and a peak current of 190
A. The electron energy is only 2.6 HeV in this example, and the maximum allowable energy
spread to stay in the homogeneously broadened regime is 6E/E . 5 x 10-5 (6E - 0.1 key).

Discussion

In this paper we have had space only to describe the basic physics of various regimes for

possible operation of an x-ray FEL. We have seen that substantial gain can be achieved.
However, clearly much work remains in areas such as accelerator design, electron beam
transport, x-ray resonators, and optics for injection and recirculation of high-power
electromagnetic wiggler pulses. The subject is relatively undeveloped, and additional
regimes of operation and mechanisms for gain enhancement may remain to be discovered.

We conclude by assessing several items of concern to the designer of an x-ray FEL.
Diffractive spreading of the x-ray beam is a minor effect, although appreciable for a very
long system. The value of z which we used for the long-wiggler example is consistent with
the effect of diffractive spreading. For the Gaussian-beam wiggler one can have a very
small E. However, if the electron beam area is much larger than E, it could be hard
experimentally to observe the lasing against a strong background of incoherent emission from
all the electrons. Because of the high loss of x-ray resonators, one can expect the laser
output itself to be rather incoherent.

Absolute tolerances on the long conventional (or microwave) wiggler are about the same as
in present-day conventional wigglers./ For the Gaussian-beam wiggler the pump beam must be
coherent over the interaction length. Effects due to the finite pulse length of the wiggler
pulse may also be important, and remain to be calculated. If one operates with C >> 1, then
either the power in the pump pulse must be kept nearly the same on each pass or the electron
energy must vary from pass to pass in order to maintain the gain at constant x-ray
wavelength.

Transverse variations in the wiggler field are a serious concern for all the regimes we
have considered, since they can lead to de-phasing of the electrons with respect to the
pondetomotive potential. We estimate that such effects can be adequately controlled by
keeping the e-beam area small enough that the electrons essentially see the on-axis wiggler
field.

Emittance can also reduce the gain. We estimate that a normalized emittance equal to or
less than that of the Stanford superconducting accelerator is sufficient to prevent serious
gain depletion.

I..o



One reason why it is interesting to study the physics of the x-ray FEL is that features
of the problem which are of minor importance at long wavelengths here become dominant. In

* .particular, quantum and other fluctuations, as well as the development of coherence in three
.P --dimensions through ASE, are dominant processes. uture theoretical work, together with

experiments at short wavelengths, should lead to a better understanding of this largely
-'. ". uncharted territory.
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"..- .. The effects expected from irradiating a beta-unstable nucleus having a very low-lying excited state with a resonant
X-ray laser are investigated.

Much as the availability of optical lasers b

"' brought about a revolution in atomic spectros-
- copy, strong short wave length X-ray or gamma- a

lasers would induce a comparable breakthrough
in nuclear spectroscopy. In this note we want to
determine the laser specifications which would
be necessary for that purpose. As an example (Z.N) (Z21.N*l)

we shall treat a situation as depicted in fig. 1. A Fig. 1. The nuclear energy-level configuration, which is
parent nucleus (Z, N) in its ground state a is envisioned in the present paper; the parent nucleus (Z N)

with ground state a has a low-lying excited state b which is
assumed to decay via betaz-decay or orbital almost resonant with an incident X-ray laser of frequency W.
electron capture to the state c of the daughter Both states a and b are beta-unstable.
nucleus (Z = 1, N : 1) which can be the ground
state or an excited state. In the presence of an allowed, a large enhancement of the total decay
incident laser field which is closely resonant can be achieved. A similar situation has been
with the excitation energy of an excited level b referred to as excited state beta-decay in astro-

-. of the parent nucleus the decay can proceed physics [1]. However, in the case we are con-
alternatively via absorption of one laser photon sidering, the decay proceeds virtually via the
and subsequent beta-decay from the level b. In intermediate state b, whereas at temperatures
the latter case the beta-decay is governed by the considered in astrophysics the intermediate state
weak interaction matrix element Vc instead of is thermally populated. Also, a similar level
V which specifies the ordinary beta-decay. By scheme has been suggested in order to populate
comparing the decays with and without the laser the upper level (level b in our notation) of a

field, information can be obtained about the possible nuclear X-ray laser (21.
!r matrix element Vb which is inaccessible other- Our formal approach is exactly analogous to
* -' 7 wise. In particular, if the direct decay from a to the treatment of Raman scattering. We assume

c is forbidden whereas the decay from b to c is that the laser is almost resonant with the energy
: : .;separation from a to b. The Schrddineer equa-

Supported in part by the Air Force Office of Scientific
,g: Recarch under grant No. AFOSR810128. tion then yields a system of equations for the

,Supported by the US Department of Energy under Con- amplitudes of the levels a, b and c. In the in-
tract No. DE.ACO2-76CH(XX)I6. teraction representation it reads [3
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* ia = V~texp-i(e,.-lw)tlb a and b. With the initial condition a(O)= 1.
+ V!"expli(e"- )Ic- (Ia) b(fl) = 0 we get after the first step

-L%. .. , "r ib V ba expli(b.- wa)tla'+ V~b expli(ek - ,Otlc.
(_,) .+(a = (l/2.%)[-A- exp(iA.t)+ A. exp(iA-t)]. (2a)_(Ib) _. (bb = ( V,,2.\)[exp(-iA. t) - exp(-iA-t)]. (2b)

iC= V*,,hexp- i(et,- e)tlb
+ V exp[-i(e€ - E)t1a. (ic) with

Here the rotating wave approximation has been '% = [(- w F/ 4 + I Vblz1/'. (3)
introduced. wJ denotes the laser frequency. heb, A. = (Wi - Eba)/ 2 - A. (4)'t is the excitation energy of the nucleus (Z. N). Isrigcs 2) 2)w a o nert
he. = M(Z. N)- M(Z- - 1. N- I) is the

%nuclear masses and e, eq. (Ic) subject to the initial condition c(O)= 0.
*ea ea-dn eIn the limit r-z we obtain for the transition! : .::" e.," + el, In the case of beta-'-decay hec denotes

the sum of the energies of the outgoing neutrino probability per unit time
and electron or positron. including the rest Icl2l1 = (v/2.V)

"-f, -'mass. For orbital electron capture he includes x o AZ x{I V ,l'l vt,-[S(et. - e + A.)
* the energy of the emitted neutrino and the

.tomic binding energy difference of the cap- + 8 (e - e + A)]

. tured electron minus the electron rest mass. At + I V.1-(A 2-8(e,- e - A.)
the intensities we need for the examples at the + A.8(e. - f - A)}. (5)

-end of this letter we assume that the nucleus is We integrate eq. (5) over the phase space of the
not ompletely ionized so that electron capture neutrino and the electron or positron. respec-
can still take place. We also assume that inter- tifo btd ectr
nal conversion from b to a or the inverse
process of nuclear excitation by electron tran- dp I f"
ition [41 are negligible with respect to the sti- J (2h)" = c- - -  de..[4- (mc-/ )/I]4e...

mulated electromagnetic transition. .--b is then
a definite electromagnetic multipole matrix or just over the neutrino phase space for elec-
clement or the sum of several of them. which tron capture
can be related to the half-life of the level b. F
hVb and h V, are the weak interaction matrix (2irl,)'- 2 dr.c
elements which govern the decays from a and b i"" "" " " with e El./. e,. = E.wh in order to obtain the

* ... to c. respectively. These matrix elements include
not only nuclear wave functions but also the total rns e
radial part of the electron and neutrino state. beta"-processes
We do not have to include phenomenological r cdL" - (,fl/)21t.2

% dampings for the levels a and b. since our des- 8&r.'C )
cription includes all possible decays of them. If x 1, - e - A + - - A -J
c is an excited state we should, in principle, add
a damping term. Since however, the population + I V.) +)

of this level will remain small in any event, we + (etv- e. + A-!).J}. (6a)
can safely neglect this small amount of leakageout o t and for electron capture

It outof the system.
Since due to the stimulating laser field the r = (4n.%2 c-) - {J Vc'[A-(e + e A.)-2

coupling between a and b can be quite strong + A-2.(e. + -A.)2
we shall proceed by first solving eqs. (Ia) and

4 (Ib) exactly after putting c = 0 and then in- + I VJ VP( + 4 + .
tegrating eq. (Ic) after inserting the solutions for + (EN. + e, + A-):]). (6b)
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where x2. = x 2 for x > 0 and x' = Q else. The R = I (phase space),,(
electron energy for capture is given by e, R = 21 VI (phase space). (9)
mcI/ - e. where hEb denotes the atomic binding n' energy. The first term in eqs. (6a), (6b) describes In addition to the first factor in this ratio. also

enry-h" is tr nes 6).(b ecie the second can be much larger than one, if
the direct decay from a to c, whereas the second
-" specifies the decay via the virtual intermediate ~ et - e, , + wi > e,. For allowed beta-decays the bspcfe-hedcyvathoita-itreit phase space is given by the shape factor (hen-,
state which can be significantly enhanced if the
id p oie adenotes the maximum released energy) [51-: , ,incident photon is resonant.

Two limits of eq. (6a) are of interest: (a) if
the interaction V. is weak or, equivalently, far (e0) = de p(Z. R)
off resonance. i.e.. I V,.4 4 Ileb. - eI, we have for , /

* '-" beta7-decav (analogous equations hold for elec-• :.. .. -x et2- (Pnc:Ih Y)l1(eo - e)y
tron capture)

(Z, R) is the electron density at the nucleus

r -c. f de=.[ej - (mc 2I/ )1]t which, if relativistic Coulomb corrections are
taken into account, depends also on the nuclear

X {1 V.c 2(ea - e) charge and radius.

+V'.,".a Case (b) applies when
": .' x [(. - e.- + (e. + W, - e.)l, (7) K2 = 41 V,.l/(e,,. - toy,))- I. (wt)

where the first term specifies the decay rate in In any experiment the laser will be tuned to
the absence of the laser: (b) in the opposite case resonance as far as possible. Hence. we should

of comparatively small detuning, i.e. ilet - W1 .4 in the definition of K replace leb. - wi by a
V, we have quantity Aw. which is the bandwidth of the laser

"-I or the width of the nuclear level b. whichever is
r dee[e2 - (mclh )1i2 larger. The matrix element I VbI is related to the

f' spontaneous multipole matrix element I V,'l byX ( I V.l+[(E. -e. + I V b.-'-= J ~
+ (E. - f. - IVl)!1

+ I Vljf(et. - E, + I V.2) where N is the number of laser photons. and

+ e. - I V*I)1} (8) VI=b determines the spontaneous half life of the
.z. level b via [61
In this case. the two level system (a, b) is Ivbl'= (87rstt,2V)-'c In va. [61

saturated. Hence the levels a and b are ap- "V -
proximately equally populated. the matrix ele- with V the normalization volume. Here we
ment Vh has cancelled from eq. (8). and the assumed again that internal conversion be neg-
direct decay from a to c is reduced by a factor ligible. If it is not. the lifetime t,.2 should he
of -2 with respect to eq. (7) (note that the corrected for accordine to the tabulated internal

term JV,+ in the square bracket %ill be negligi- conversion coeticicnts 161. Using eqs. (!1) and
ble under almost all circumstances). (12) we now have

Obviously. case (b) is of paramount interest K- = (2f,:)c In 2(NV)(w.1w,,) " . (13a)
since it allows for a comparison of the weak

-" matrix elements V. and V,. The branching or in terms of the intensity of the laser field
.-ratio of the two processes a-. b-.c and a- c is

proportional to I Vtl;/I VI 2 . The decay enhance. . l( I))•
ment due to the laser reads in the particular X (t, 2ns)

"1  (13b)

case where V. is classified as forbidden where- The requirements which have to be met by the
Sas Vk is allowed laser in order to achieve K2 I are very severe.

18
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However, even if K2 . 1, eq. (7) shows that the which can be of order unity or larger even for
decay is still enhanced by a factor of 1 + R with K2 41.

R -KR, (14) We now want to discuss some examples for
the scheme discussed thus far. '3l decays by a
highly forbidden decay to a low-lying excited

a state of '%Xe. From its excited 5/2*-state an
allowed decay to the same level can take placew 17n 0.22 as well as a forbidden decay to the ground state

.M 1.6 lX y of Xe (see fig. 2a). If we take for the parameter
7 I/ 0.19 Aw the natural line width of the 5/2 -level and

have in mind that the half life t, to be used in
eq. (12) exceeds the actual half life by the in-

(0"i ) :".ternal conversion ratio. we find from eq. (13b)
0.04 that we have K- = I for I = 2 x 10'" W/cm2 . A
0.0 similar example relating to electronic capture is

29, 129 e given in fig. 2b. With analogous assumptions we
53.L554 need in this case I = 6 x l×' W/cm 2 in order to

get K 2 = I. Already a preliminary search of
b nuclear data easily yields examples with even

90 ns 0.61 lower ratios tl¢ipic2 . However, this advantage
?/2" 6xlO0y tends to be more than compensated by the

*'. 0rapid increa.,: in the internal conversion ratio
for decreasing w. Finally. fig. 2c exhibits an

(1001.) example in w hich a highly forbidden transition
is rendered allowed by E2-absorption of one

o137 137. photon with h = 0(1.072 MeV. In this case, an
5a 57O intcnity of 4x< 10" W/cm- is required in order

it) achieve K2 = I. In all the preceding examples
the degree of forbiddcnncss is reduced by two.

a - 218 at at. Hence a significant enhancement would

4* - 190 alreadv ,how tip for K2 < 1. Whereas the
(3)" l:6s 1.82 required intensities suggested by these examples

0. 1.7 do not -&cm to be extraordinary the assumed
2°__t - 1.50 degree of monochromaticity might. Our

2- - 1.44 a~sumption of neglecting the laser band width
(68%) (32%) with respect to the natural line width of the
EC 8-" nuclear intermediate level comes up to

-- 071 demanding .Iww -8 x 10-l' for "-La (fig. 2c)
__"0_ 0 and Aw'w - 1.4 x 10 2 for ' l (fig. 2a). Ofcourse, in view of eq. (13b) the requirements as

1388. 138 La 13 8 Ce to .w:w can be relaxed at the expense of a56 57 58 high.r intensity,
[-N',"

Fig. 2. (a) Level %chcme for the beta-decay ' R-'iX.
F ncr level %%inm'nt% arc in McV. Data are taken from References

rcf, h .h) Same ,i% (a) for electron capture from 'k:La ,,
. *Ba. t) ( -.a decav via a .ccond.ordcr forbidden decay II, . V ('Wm.ron. Atrophy%. J. 1410 (1950) 452.

both h 0- and by EC. Both decay% are allowed from the 121 (B. (ollin, e al.. J. Appt. Phys. 53 (19S21 4.45, and
I (3)"-level. reference, therein.
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I AA NOTE ON TOTAL CROSS SECTIONS AND DECAY RATES
IN THE PRESENCE OF A LASER FIELD *
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end Max.Planck-Instftut fur Quantenopik, D-8046 Garching near Munich. Fed. Rep. Germany

Received 10 November 1982

It is shown that in the quasiclassical regime total decay rates of neutral particles are unaffected by the application of an
intense laser field and decays of otherwise stable charged particles cannot be induced. The method can also be applied to
scattering problems in the presence of a laser field.

It is well known I I that in the presence of a re. has been somewhat puzzling. In this note we shall
coiling agent there can be a significant energy transfer point out the reason for the fact that, while decay
between a charged particle and a laser field. This is in- spectra and differential cross sections easily exhibit
dependent of the frequency of the laser field and pro- enormous effects due to an applied laser field, total
portional to the square root of the intensity. For an decay rates and cross sections stubbornly ignore its
intensity of 1018 W/cm 2 its maximum is of the order presence up to an intensity of the order of the critical
of I MeV. While such an intensity is certainly high, it one. The reason will be found in the basic classica'lty
is not out of reach of present day lasers 121. Hence of the interaction with the laser field as well as gauge
the idea was near at hand to investigate whether decays invariance. To be specific, we shall concentrate on a
of elementary particles which proceed slowly or not plane wave laser field of arbitrary polarization and
at all due to lack of energy could be enhanced or in- frequency decomposition so that the explicit Volkov
duced by the application of an intense laser field, solution I I ] is available. However, our results are
However, early attempts 13) (for a recent review of certainly valid for a much wider class of external
various decay processes in various external fields see fields including, e.g., constant magnetic fields. Though
ref. 141) to calculate these effects brought about our approach will be completely relativistic we shall
significant effects on decay rates only for extremely make explicit reference to nonrelativistic potential
intense fields of the order of the critical field strength scattering in the Born approximation for the sake of
E0 = c3 n2/et = 1.3 X .1016 V/cm corresponding to simplicity. A more detailed account of the method
an intensity of 4.7 X 1029 W/cm 2. The required in- will be given elsewhere.

, tensity can reduce by several orders of magnitude if The Volkov solution of the Dirac or Klein-Gordon
very small mass differences are involved [3,4], but equation in the presence of an external field, speci-
still remains much larger than the nowadays attainable fled by the vector potential A,(x) with aA. = 0,
1018 W/cn, 2. In view of the above mentioned large can be written as (we use four-vector notation with a
energy transfer at such an intensity this non-effect metric such that ab = a0bo - ab; we let C I but

keep h)
* Work supported by the U.S. Air rorce Office of Scientific p(x) Dp( ) exp (1-ix + iJ't(])1/") , (I)

Research, Contract *ArOSR-8I-0128-A. Preliminary ver-

sion of this work in Appl. Phys. B28 (1982) 310.
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*,('i.2' j (7

g U0

V() dt' L-2PA(Q) + CA2 (f (2) 1u'f du B(u)' ()l*' (7)
: _u :U 0

Here p is the momentum of the particle outside the In the quasiclassical limit h -- 0 the stationary phase
field, p 2 = M2, n is the propagation vector of the laser method yields

-field, n2 = nA = 0, and t = nx. The lower limit of the.,,integral in eq. (1) is immaterial because it merely in. 7f exp[iA(un)/h] B(Un)[2 d /A"(Un,)] I/, (8)

, troduces a phase which cancels from all matrix ele. n
ments. Dp(x) is a Dirac spinor whose explicit form where the sum is over all zeroes un of A'(u) within the
need not concern us here and which, of course, is ab- range u0 < u, < U0. We shall actually need 12. In
sent in case of the Klein-Gordon equation. squaring eq. (8), we can discard the nondiagonal

Consider now a decay process such that an initial terms: since the exponent in eq. (8) is inversely pro.
particle described by the wave function ip(x) decays portional to h, already small variations in the momenta
into N final particles with wave functions Vpn(X) (n and the laser field strength give rise to rapid fluctua.
1, ...N). The wave functions are given by eq. (1) or are tions of the exponential. Hence due to unavoidable
just plane waves for charged or neutral particles, re- uncertainties in these parameters the nondiagonal
spectively. The corresponding matrix element is terms are wiped out and we can write

M= fd4x P,(x)... pN (x)r, p(x). (3) IA2 = FIB(u.,)j221rh/A"(u.)
n

where r specifies the coupling. The integral is conve-
niently performed in terms of light-like coordinates [51 = 2rh fdu IB(u)j 2 6(A'(u)). (9)

u = = (x0 
- x3 )1/2, v = (x0  x3 )1/2, (4) In the last step we have made use of the representation

where we assumed that the laser field propagates in
the x3 -direction. The corresponding momenta are B(fx)) = Z6(x - xn)llf'(X)l,
Pu t( pO+p3)lv/, P- = (pO_ p3)l, 'V (5) where the sum extends over all zeroes off(x).

so that An obvious example where these approximations
2 do not apply is the emission of a photon by an elec-

S. 
= Up, + Vp - pix,. tron in the presence of a laser field, i.e. high-intensity

A £. Compton scattering [6]. In this case it can be shown
4' We then obtain that the quantity A(u) becomes proportional to the

(2".)'(.( N momentum of the emitted photon. Hence hk cancelsM. M=(21r)36 (3) (P -n ElP. from the exponent in eq. (7), and the condition that

R. A(u)/lh varies rapidly as a function of its parameters is

no longer satisfied. This is related to the vanishing.... , X fdu exp iu- P u/Jmass of the photon. Consequently, we have to ex.

clude the emission of a single zero-mass particle from
our considerations.

X exp i( ([)- Eq. (9) shows that we can represent the decay rate
(6) Ia112 as an integral over an "instantaneous" decay rate

where the three-dimensional 6.function contains the specified by a definite value of the phase u. This is a
momentum components p, and pi (i = 1, 2). We shall consequence of our quasiclassical approximation. This

.. evaluate the remaining integral by the stationary phase instantaneous decay rate, though for an optical laser
method. Let us abbreviate the integral by field hardly accessible by experiment, is certainly a

"truly physical quantity" in the sense of ref. [71. As
such, it must depend on the laser field only via the

132
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kinetical momenta pkin(u) p - eA(tf). This can be function,
explicitly shown for eq. (6) by going over to the light- .( - let iS)/h (10)
like momentum components.5) and, if necessary, to px) -

a lightlike Dirac algebra [5). If we now calculate the is appropriate. If the classical action S depends on
f total decay rate by integrating eq. (6) over the final more than one coordinate the stationary phase ap-

momenta the laser field is completely eliminated from proach formulated in eqs. (7) to (9) should be re-
the final state by changing the integration variables considered. The limits of applicability of the latter are
from p, to pkin.,. Obviously, this elimination relies difficult to assess. It certainly breaks down when the
on the representation of the decay rate as an integral field strength becomes comparable with the critical
over an instantaneous decay rate. field strength E0 which is a genuine quantummechani.

We now point out some immediate consequences cal quantity. In that event the quasiclassical approach
which are, of course, restricted to the regime where can no longer be expected to be sufficient. However,
our approximations apply: (i) the total decay rate of as mentioned at the beginning, this is far beyond the
a neutral particle is unaffected by a laser field; (ii) if realm of laboratory experiments which are within
the decaying particle is charged, the total decay rate reach in the foreseeable future.
does depend on the laser field via its kinetical mo- There is a close connection between our present
rmentum. If we would sum over the initial momentum, approach and the infrared problem of quantum elec-
too, the laser field would again be completely elimi- trodynamics (which is classical, too). Cross sections
nated. This implies: (a) if the particle is stable in vac- have been shown to be essentially independent of the
uum it remains stable in a laser field (an apparent presence of an arbitrary number of soft photons in
counterexample, the decay e -. et, which does occur the initial as well as in the final state 112).
in a laser field but not in the vacuun, has been dis. Finally, as an explicit example we shall consider
cussed above);(b) if it is unstable, the decay might be nonrelativistic potential scattering in Born approxima-
enhanced for particular momenta at the expense of be. tion, in order to discuss the stationary phase approach
ing suppressed for others, so that the decay rate integrat- in more detail and to outline a simple way to derive
ed over all momenta agrees with its vacuum value. For the cross section. The transition amplitude (3) is in
Ip > elAl, however, this effect is expected to be this case
small; (iii) for a laser field we have A, = (A0 - A 3)/

= 0, hence PLkin= P." Consequently, integration F = - - f d4x 1P (x)V(x) (Ip)(X)
over 1n d2p n,, suffices to eliminate the laser field

from the final state. For a neutral decay this implies, where we now use the nonrelativistic limit of the
that while decay spectra plotted versus the energies Volkov solution (1), (2) in the dipole approximation.
pO of the decay products exhibit dramatic effects due [-(x) exp(ipx/h
to the laser field, spectra plotted versus p,,. , are un.
affected; (iv) the decay of a neutral particle with i
charged constituents is outside of the scope of our + 2 f dt' [2pA(t') - eA 2(t')] . (I2
present considerations. E.g., our results do not apply
to multiphotoionization of atoms, which does occur The introduction of lightlike coordinates is now ob-

* at impressive rates and energy transfers [S. Also. solete. and eq. (9) yields die transition probability
whereas the enhancement of 0-decay of a neutron is 2_
ruledout (conclusions to the contrary 19) originate 1Fj2 I V|h -I(P _ iv
from insufficient numerical estimates), the enhance- T/2
ment of nuclear 0.decay is still viable, though not via X dt 6(pO - PO + (el(p - p')A(1), (131
a final state interaction 10,11 ]. X T/(

It should be obvious from our derivation that it
applies to a more general situation than the plane with P) p-I2/_M. PO p' 2/2m. Eq. (13) can be re-

.4 wave laser field which we considered. We expect it to written as
apply whenever a WKB.approximation for the wave
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IF12 = (47rmn?/)l V(h-'(pk - P ))l las if(i) n ) 1, (ii) the actual rapid oscillations of the
'S.- Bessel functions Jn(Z) 2 as a function of n are averaged

xf dt, ,(- _p2 over and (Hi) a rapidly decreasing exponential tail for
in- Pin)• (14) n > z is neglected. If we are not interested in do,, for

a particular n but only in the sum InI don1 withJ
This makes the exclusive dependence on the kinetical a p u n0  bt o the su anin are wery
momenta obvious which has been stated above on well satisfied. Eqs. (17) and (18) then agree if we

general grounds. We evaluate eq. (13) explicitly for ,
,as--sT r tidentify doldpo with don/hw. The approximations

-A a cos wt, A 2 = -a sin wt. The result is which are inherent in eq. (19) have been extensively
IF12 = (2T/h)lV(h- I(p - p'))l2 discussed in ref. [13). Hence we will be content with

pointing out that it is a classical approximation: both

X [(eaqT/m) 2 - - po) 2 + 1/ 2, (15) the rapid oscillations of J11(z) 2 as a function of n and

where qT is the transverse momentum transfer the exponential tail, which originates from energy

2 transfers nhw in excess of the classical interaction en-

-(2 - p,)2) 1/2  ergy eaqT/m, are quantum features. As such they have
_1' j ' dropped out of our quasiclassical approximation.

_..w .. and xP. = x" if x > 0 and zero otherwise. We note that We benefitted from discussions with M. Hillary.
in the limit a = 0 when the laser field is switched off
we have References

- -i ..!i IF12 = (21rT/h)l V(h-lp -p'))126(p6o-Po). (16)
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ABSTRACiO

It is shown that radiation fields well below the critical field strength

cannot induce any noticeable enhancements of nuclear decay rates.
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In a previous note [13 we have shown that the total decay rate of a neutral

free particle decaying into various charged particles is unaffected by the

presence of an external electromagnetic plane wave field as long as the

quasiclassical regime applies. This is, roughly speaking, the case if the

external field is significantly weaker than the critical field strength

Ecrit = m2c 3/eh = l.3xlO 16 Volts/cm, which is completely out of reach for all

plane wave fields which can be generated in a laboratory.*

Recently, it has been claimed that forbidden nuclear beta-decay can be very

significantly enhanced by the application of an intense radio frequency field

with a field strength of lO ... 10 5 Volts/ca [2-41. The idea was that due to

the presence of the external field the normal selection rules should lose their

relevance. The present authors contested this claim on the basis of independent

calculations in the nonrelativistic limit which showed that the enhancement

could be, at best, proportional to the ratio E/Ecrit of the applied over the

critical field [5]. More recent explicit calculations demonstrated that,

actually, the enhancement goes with (E/E crit )2 [6). We also pointed out the

analogy with the above mentioned no-go theorem for free particles [5]. It has

been argued that this theorem since it was formulated for free neutral particles

does not apply to nuclear decays [7]. This criticism is justified, in

principle. It is the purpose of this note to extend the no-go theorem to the

latter case, thus giving a very simple and very general argument against the

possibility of altering a nuclear decay rate, be it forbidden or not, by an

S"external electrcmagnetic field under the cited conditions.

*. The essence of our previous argument can be condensed into a few sentences:

in the quasiclassical regime the differential decay rate can be written as an

* Actually, what matters here, is the field strength in the rest frame of the
., . particle. Hence, the quasiclassical regime does not apply, for example, to

ultrarelatAvistic electrons (y > 10') in an intense focussed laser field with
S1010 Volts/an.

, . . , , .. . , . " . . . . . , . . .... r. - " . .** .* *. ** - - S."
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integral with respect to time over an instantaneous-decay rate which depends on

- the instantaneous value of the vector potential A(t) of the external field.

This instantaneous rate, being a gauge invariant physical quantity [8] must

depend on the external field only via the kinetical momenta p - e(t) of the

charged particles in the final state, since the decaying particle was assumed

neutral. In obtaining the total decay rate, the integration over the canonical

- momenta p can be replaced by integration over the instantaneous kinetical

momenta p - eA(t). Thus all dependence on the external field A(t) is

eliminated. If the interaction of the nuclei with the field is neglected as it

is in Refs. 2 - 4, this argument carries imnediately over to the case of nuclear

decays, as we shall now demonstrate in detail. We shall restrict ourselves to

nuclear beta-decay. However, the generalization to, for example, internal

conversion or radiative transitions, is mainly notational and should be obvious.

.•,... Within the model adopted in Refs. [2 - 4) the decay is governed by the

matrix element

M dgx e eel(r)

-iE.t ie A(u)r
xgV e e 1 

(r)

x eqx/n ipx/h*n - ""., xe e Vp(u),
p

with

0'

"i ' .. ' -._4 4 4 
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U

VP (u) sexp(i/h) e Jdu'(-2pA(u') + eA2 (u)) (2)

the Volkov part of the electron wave function. We shall ignore spin for the

time being. We let~c =1, but keep h. In Eqs. (1) and (2), the vector

potential A-( u), u - t -z, represents the external field which propagates in the

z-direction, its propagation vector being n = (1,0,0,1) so that nA = 0. We do

i f I "r

initial and final state, respectively, 4 being effective charges [2]. The

wave functions *(r) are eigenfunctions of the effective nuclear Hamiltonian

Ho u)(2/ e )Ae + V( ) with eigenvalues E Contrary to appearance, the

nuclear wave functions do not incorporate any interaction between the nucleus
4.U

and the field; the factors exp(ie i fAr) are necessary in the Coulomb gauge which

we have tacitly adopted by using the Volkov solution (2). le have discussed

this point extensively in Ref. 5. Finally, in Eq. (1) the weak interction

responsible for the beta-decay is represented by gV.

n hanging the integration variables innEq. (1) to r and u and rearranging

terms we can write

M T du w a (q + eA(u), q. -q+ po ( E _ E)

(i/I) (Ef E~ + RO+ po)u
Xe V (U)

where

............................... respctiely ei . .en fetv chre [2.
,, wave unctions#i~f( ) re.e...nun..ion.of..he.efecti.e.u..ear.....t.n.a
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-ikr •ikZ
Pfi( T, kz) r f r) gV (r) e e (4)

and we have used that ef - - e [2), which is a consequence of charge

conservation. The #ubscript T in Eqs. (3) and (4) designates two-vectors,

transverse to the propagation direction of the field, e.g. = (P,P,.)

Because the integration in Eq. (4) is, due to the presence of the nuclear wave

functions, restricted to II 1! R0 with R0 the nuclear radius, the form factor (4)

is a slowly varying function of its arguments. Hence we may evaluate Eq. (3) by

stationary phase integration, treating pfi as slowly varying. With obvious

abbreviations we then have

-iE (u)
M , du p(u)

Z -ih (i/h)E(u

E"(un  e O(u)
n n (5)

where the sum goes over all zeroes un of E(u). The following is strictly

parallel to Ref. 1: in squaring ti we can drop cross terms which would yield

rapidly fluctuating contributions which average out. Consequently

IP(un)12
"', ". n E"{ n

,_ = 2,A JduIo(u)126 (E (u)) (6)

so that the differential transition rate is represented as an integral over an .

, instantaneous rate. As argued above, the latter can only depend on A(u) via the

NL
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INTRODUCTION

It is the purpose of this lecture to study the influence of
a strong external electromagnetic field on the spectrum of the
emitted particles in a nuclear beta decay and in particular on
the lifetime of the radioactive nucleus. The possibility of
manipulating nuclear lifetimes [i in a laboratory is very
exciting and could bring important applications. The first
experimental proof of this effect is more than 30 years old
(2,3]. Experimentally accessible are those nuclear decay modesIII which involve an interaction between the nucleus and the atomic
electrons such as internal conversion [3] and orbital electron
capture C41 which is closely related to beta decay. By changing
the chemical environment of the atom, by applying high pressure
technology, by optical excitation with strong fields, by ioniza-

- tion and implantation, etc. the electronic structure of the atom
can be modified, which results in changes of the nuclear lifetime
up to a few parts in 102 [4].

However, it always seemed hopeless to influence the majority
of the nuclear decay -cdes which take place without any inter-
action between the decaying nucleus and its environment. All
imaginable fields in a laboratory are weak compared to the strong

- interaction or the Coulomb field at the surface of a nucleus.

ASupported in part by the Air kbrce Office of Scientific Research
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Hence, changes of these nuclear decay rates have only been inves-
tigated under conditions which are of interest in astrophysics.
In particular, nuclear beta decay was studied (i) under the
condition of a statistical equilibrium in stellar interiors where
excited nuclear states are thermally populated [5], (ii) for
single photon absorption by the emitted electron from a Planck
spectrum at stellar temperatures of the order of 108 OK [6), and
(iii) for a strong~uniform constant magnetic field [7] as it
exists on the surface of a pulsar.

Due to the ongoing recent progress in the development of
high power lasers it is nowadays also possible to produce extra-
ordinarily strong fields in the laboratory. For example, in tht
beam of a d-glass laser, which produces TW pulses, the intensity
can be (after focusing the beam down to, say, ten wavelengths) of
the order of 1018 W/cm2, corresponding to a field strength of
about 1010 V/cu. These experimental facilities suggest the
theoretical treatment of nuclear decays in the presence of strong
electromagnetic plane wave fields.

The effects of intense plane electromagnetic waves on
different quantum processes were already investigated two decades
ago [8]. The interest soon focused on the decays of elementary
particle like muons and pions [9] or neutrons [10,11) under the
influence of a monochromatic external field. A common feature of

E. Refs. 7-9 and ii is the result that the influence of the external
_field on the total decay rate depends on the ratio between the
field strength and the so called critical field strength
EC = m

2c3/eh. This is the limit for the applicability of
classical electrodynamics, beyond which quantum effects are
dominant [12]. This result seems to indicate that the influence

of an external field of optical frequency on the lifetime of an
elementary particle is a pure quantumn effect which is very small
as long as E is small compared to Ec. For electrons the critical
field strength is about 1.3x10 0 V/cm and therefore still far out
of the range of present laser systems.

On the other hand, Ref. 10 predicts a measurable change of

the lifetime of free neutrons in presently feasible fields.
Furthermore, during the last few years nuclear decays in the
presence of intense plane wave fields have also been investi-
gated. These calculations predicted appreciable enhancements of

" the total decay rates in the field of available lasers, both for
nuclear gana decay [13] and nuclear beta decay [14], and also
recently for forbidden nuclear beta decay £15].

In these lecture notes we will follow Ref. 14 in describing
the decay process. This implies the use of a modified versicn of
the Keldysh approximation L16] which was introduced for the
theoretical description of laser-ionization in the so called
electric field gauge. This approximation includes two steps:
(i) the interaction between the bound system and the field is

I ...
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neglected, i.e. we consider"the nucleus to be unaffected by the
external field; (ii) in the final state the interaction between
the emitted particle and the residual bound system is neglected,
i.e. we neglect the Coulomb interaction between the emitted elec-
tron and the residual nucleus. The quality of the first approxi-
mation will be demonstrated in the next Section. With the second
approximation we neglect a usually small effect [17]. In the
framework of this approximation only the electron emitted in the
nuclear beta decay couples to the external field. This is why we
choose nuclear beta decay as the most promising decay mode: the
smaller the mass of the emitted charged particle, the stronger
its coupling to the external field dnd hence*-th- -strcnger the
laser impact on the decay process. -

-- There are two general reasons why we might expect a change
in the nuclear lifetime in the framework of this model: (i) it
is well known for ordinary beta decay that taking into account
the Coulomb corrections between electron and nucleus changes not
only the spectrum of the electrons, but also the nuclear lifetime
[17]. Hence, including the interaction of the electron with the
laser field could result in the same effect; -(ii) as we will show
below the most likely energy transfer from, say, a Nd-laser with .
an intensity of I ,, 1018 W/cm2 to an electron emitted in a
typical nuclear beta decay is of the order of MeV! Such a large
energy increase leads to a much larger phase space of the emitted
electrons which should result in a -cnsiderably faster decay of
the nucleus. " . .

In this lecture we shall restrict the discussion to (i) the
nonrelativistic theory and (ii) to electromagnetic fields of
circular polarization. This will simplify the calculations so
much that they can easily be followed in detail. Strictly
speaking, the nonrelativistic limit holds only if the mechanical
momentum p-e. of the electron in the field is small compared to
mc. This implies a limiting condition for the kinetical electron
energy E outside the field, E = p 2/-n << mc2 and for the strength
of the external field ejl//mc = v << 1. This approximation seems
to be unrealistic for many nuclei whose energy release in the
decay is larger than the electron rest mass as well as for the
fields which we intend to consider. Hence, in principle, the
Dirac theory is required for the description of the electrons.
Actually, relativistic effects show up in both the electron
spectrum and the total decay rate. However, all the essential
physical features which are introduced by the interaction with
the laser field are included in the nonrelativistic theory in a
very instructive way. Furthermore, as we shall demonstrate, the
change of the lifetime in the presence of an external field is
fairly well described by the nonrelativistic theory for all real
nuclei and arbitrary field strengths, not only in the nonrelati-
vistic limit Ip-eI << mc. Hence, we will present here only the
nonrelativistic theory. However, all the nLmierical results shown
are gained from the relativistic beta decay theory for allowed
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transitions with Dirac wave functions and V-A interaction. This
theory will be published elsewhere.

We -will first derive the wave functions of the different
particles involved in the nuclear beta decay. This is based on
Ref. 18. Whhat follows will be completely independent of Ref.
18. Next the partial transition rates will be calculated in the
electric field gauge and in the radiation gauge. We will then
evaluate the electron distributions and finally we will discuss
the nuclear lifetime.

WAVEFNCTIONS

For the calculation of -the wavefunctions of the different
particles involved in a nuclear beta decay we have to recall-some
points discussed -in 2ef. .18. _ We can obtain the Hamiltonian of a
particle with charge e interacting with an external -electro-
magnetic field from the Hamiltonian H = p2/2m + V(r) -f a
particle in a potential V with the help of the substitution

-.\WI

-e eA(.
This procedure yields the Hamiltonian

4- I (s._ e4 4+ + tcZ - o c.

The vector potential Ag(r,t) and tie scalar potential Ug(r,t) are
related to the electric field E(r,t) and the magnetic field
.- r1, t by

-_4

(2.2)
-4.

The index g denotes the gauge freedom in the potentials. E and B
remain unchanced if we transform from a gauge (Ag', U) to a gauge
(A,' ug') according to

L4 ,,-A

- 1l).A.- (2.3)K". where X is an arbitrary function of r and t

3.
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Also, the state vector g>, which is a solution of the

Schr&dinger equation

a I - > -> (2.4)

, depends on the gauge. The wave function in a gauge g is

transformed to another gauge g' by the unitary transformation

" -> _ &' ( },,/. (2.5)

The Hamiltonian has to be distinguished from the energy operator

A - ,' (2.6)

This (unperturbed) energy operator is a physical quantity in the
sense of Ref. 19, since it transforms under a gauge transforma-
tion like

'-8 e e

In contrast, the Hamiltonian is an unphysical quantity since it

transforms like

....... : i = e e-

This distinction is imrortant for the definition of an unper-
"turbed state as discussed in Ref. 18.

Throughout these lecture notes we will describe the laser

field by a uniform electric field 9(t), neglecting the magnetic
field. This long wavelength or dipole approximation is well
justified for nuclear beta decay since the wavelength of visible
light is about 5xlO cm, whereas the radius of a nucleus is of
the order of 5xiO-1 3 cm. Hence, when calculating matrix elements
of the nucleus-laser interaction the external field can be
considered as constant over the integration area. Within this
long wavelength approximation two gauges are most frequently
used: the electric field gauge (E-gauge) with

,""-.-." * .) - Lt) ( -2.7)

".1-h



and the radiation gauge (R-gauge) with

Both gauges are related by the gauge transformation

ii "t

-XcR'U ) (2.9)

Ebr the nuclear wave functions to be used for the calculation of
the beta-decay we shall adopt a simple one-particle shell model
description: the nucleus is divided into a "valence" nucleon and
an inert core which is affected neither by the field nor by the
decay but generates the potential V({) for the valence nucleon
which decays. The valence nucleon has an effective charge eN and
mass M. Both do not have to be specified; we have just to recall
that because of charge conservation the effective charges of the
initial and final valence nucleon will satisfy the relationeN~*- e e for beta+-decay (e -lel denotes the electron
\, i -eN f--e eoe teeetc

charge).

-A. It is convenient to use the E-gauge. The nuclear wave-
function 'TN(r,t) is then a solution of the Schrddinger equation

4V (i-) e, ,,)2.1)

The interaction term -eNEr is at the nuclear surface of the order
of 10-2 - lO1-eV if we apply a field of 1010 V/cm. Th. s iscompletely negligible compared to the nuclear binding potential
or to the Coulomb potential at the nuclear surface, which are of

the order of &4eV. A noticeable modification of a bound nuclear
state would generally require field strengths close to the
critical one. We shall therefore assume that the initial and
final nuclear states do not interact with the external field.
This is the first part of the Keldysh approximation.

As discussed in Ref. 18, the noninteracting state is defined
as an eigenstate of the unperturbed energy operator (2.6), not as
a solutiqn of the Schrodinger Eq. (2.4) in which the potentials
-Ag and U are set equal to zero. In the E-gauge this distinction
does not play a role since the Hamiltonian HiL and the energy .;
coincide. The noninteracting nuclear state is then a solution of
Eq.,12.10) in which we drop the nucleus-field interaction term

-e. r
l l***u$ A. *- '- .



- 1

where N is an energy eigenstate

.(2.12)

If we want to express the noninteracting nuclear state in the
R-gauge we have to be cautious. In order to obtain an eigenstate
of the energy operator E£R (2.6) with the same constant energy
eigenvalue E N we must apply the unitary transformation (2. 5) and
(2.9). We then obtain a wavefC~ction which is different from Eq.
(2.11)

--~ ~ ~ v Tib, 0 '

Q (2.13)TN

From now on we shall drop the superscript in AR and refer with
-gathe notation A to the vector potential in the R-gauge (2.8).

For the calculation of the electron wavefunct ion we use the
second part of the Keldysh approximation and neglect the Coulomb
interaction of the emitted electron with the residual nucleus.
However, the interaction between the electron and the external
field should be taken into account exactly. Hence, we need an
exact solution of the Schr6dinger equation for a free particle
(V = 0) in the external field A(t).

We notice now that it is rore convenient to solve this
problem in the R-gauge

_ T s ()e(t+ (2.14)

instead of the E-gauge

2.-15)

since the canonical momentum p of the free particle is a constantr. of motion in the R-gauge, but not in the E-gauge. It is well
known in classical mechanics [20] that the i-th component pi of
the canonical momentum. 6 is conserved if neither the vector

S potential A nor the scalar potential U-4 depend on the i-th com-
ponent xi of the space coordinate r. In particular, if A, and U7-

. . . . ...'., ... ............. .... .. -...
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are spatially uniform p is conserved. This also holds true in
" quantum mechanics: an operator is a constant of motion if it

does not explicitly depend oD time and if it commutes wit the
Hamiltonian H7 . Hence, if A and U do not depend on r the

eigenvalue of the canonical momentum p is a constant of motion.
This is true for the Hamiltonian H in the R-gauge (2.8) with the
long wavelencth a--mroximaticn for the field. If we make the
additional assumption that the vector potential ?A(t) is switched
on and off initially and finally, i.e. A(t) = 0 for [tl > to, we
can identify the conserved canonical momentum with the momentum
outside of the field, which would be measured by a spectrometer.
Again, this holds only true in the R-gauge. On the other hand
the canonical momentum is not a physical quantity in the sense of
Ref. 19. Hence its eigenvalues are different in different
gauges. Especially in the E-gauge (2.7), where the vector oten-
tial vanishes and the scalar potential does depend on r, the
canonical momentum p coincides with the mechanical momentum

(t) = p - eA (t) and its eigenvalue is no longer conserved.

Since it is always convenient to exploit the existence of
conserved quantities, we like to solve Eq. (2.14) instead of Eq.
(2.15). Only in the R-gauge can we make the following ansatz for
the electron wavefunction: e is characterized by the eigenvalue
p of the canonical momentum and we assume that it factorizes into
an unperturbed plane wave and a function f(t) which depends only
on time, since also the field depends in the long wave length
approximation only on time

In the nonrelativistic theory E is related to the canonical
momentum by

] (2.16)

Only in the absence of the field denotes E the kinetic energy.
By inserting the ansatz into the Schrodinger equation (2.14) and

O. using Eq. (2.16) one obtains the equation of motion of f(t)

-tg = t + _ ,4 c@)]Le

Integrating this equation yields the exact solution of q.
(2.14):
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where V denotes the normalization volume. The lower limit of
integration in Eq. (2.17) only ccnitributes a constant phase to
the wavefunction and is therefore insignificant. The analogous
solution of the Dirac equation is known as the Volkov solution
[21].

It is easy to check that the wavef unction - (2.17) -Is an
eigenstate of the operator of the canonical momentum with eigen-
value ~.Since the operators of the canonical momentum p and of
the mechanical momnentum R - eA comrmute in teln wave-
length approximation, 'Ye is also an eigenstate of and of the
operator of the kinetic energy in the R-gauge

* £.e~i4(t (2.18)

The nonrelativistic Volkov solution T a a time depende~pt
enerc.1 eigenvalue, in contrast to the non-interacting state
(2.13) which has a constant energy eigenvalue EN.

In order to obtain the solution of Eq. (2.15) in the E-gauge
we h-ave to carry out the gauge transformation (2.5) and (2.9) on
TR with the result
e 

~ (2.19)

E

where we used Eq. (2.16). We note that -:e depends only on the
*eigenvalue of the mechanical momentum 7(t) =p - eji(t). ThIs is

a physical quantity and has therefore the same value in any
gauge. Here we expressed by the gauge dependent canonical
momentum and vector en the R 2auge.

Throughout these lecture notes we shall describe th laser
field by a circularly plarized nochr atic plane wave with
frequency w, propagating in 63-direction

[2]

:............................................................
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E =e 6 ' -O. (2.20)

The corresponding vector potential in the R-gauge reads

.44t4J4 e 14 4 _
/ 0 -" (2.20b)

By inserting this vector potential into R (2.17) and dropping
the phase which results from the- lower integration limit we
obtain

de
(221)

i'o(CL -" "4-

-nt a dp olrage n

Here we introduced the azimuthal and polar angles e and Oof the
momentum p

The field deendence is expressed by the dimensionless parameter
v, which was introduced earlier

'-e 0  - _- rC e- - .(2.23)

• . Er is again the critical field strength Ec = m2c3/eh = 1.3x10 16

V/cm. For practical calculations it can be convenient to express
v either by the intensity I and wavelength X of the field

or by the photon density and the wavelength N

114
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Finally, the dimensionless amplitude z of the oscillating term in
the exponent of Eq. (2.21) is given by

- -(2.24)

For circular polarization the k--term in Eq. (2.17) is constant,
A4(t) = A , and gives rise to the field dependent energy shiftv2 mc-i2 in R (2.21). In a relativistic context, this term is
usually interpreted as a contribution to an effective mass. This
becomes apparent from the relativistic Hamiltonian

- 4 .2 ' 9. ~

.- 9

- + e A" c _C _e ,4

Hence, in the following, we shall refer to this term as the
effective mass correction. It will play a crucial role in the

*, following Sections.

The p A term of Eq. (2.17) is the origin of the oscillating
exponent exp(iz sin) in TR (2.21) and responsible for the fact
that the kinetic energy (1.18) is not a constant of motion. It

*. can be interpreted in terms of the electron undergoing field
induced multiphoton transitions. We see this with the help of
the generating function of the Bessel function Jn(z)

7 (2!- e (2.25)
• -- It --e

* This enables us to rewrite the nonrelativistic Volkov wave-
function in the form

-- "6)- )

v Although we only deal with classical fields we can interpret the
wavefunction (2.26) in terms of an infinite sum over n absored
or emitted photons.

RThe time dependent part of '? includes an effective enerv
which changes in discrete steps of hm3. This represents multi-

-. photon processes of any order n. We can estimate the most likely

.4--
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energy transfer from the field to the electron by considering the
* ' behavior of Jj(z) as a function of the order n for fixed z. When

the rapid oscillations are averaged over, J2(Z) increases slowly
with increasing Ini until it reaches its maximum around InI = z.
For nl > ZJn(z) as a function of n decreases rapidly to zero.
Hence it is most likely that about z photons are absorbed by the

. electron, corresponding to an energy transfer zhw = 'cPT. In an
external field with v of the order of unity the electron can
therefore absorb energy from the field up to the order of its own
kinetic energy, typically some I4eV for nuclear beta decay. This
strong energy absorption encourages us to expect a considerable
laser effect on nuclear beta decay. However, we realize already

Sthat this will be counteracted by the increase of the electron's
effective mass.

Finally, we need the neutrino wavefunction. Since the
neutrino neither interacts with the laser field nor with the

N! residual nucleus, it is well described by a plane wave solution
of the Klein-Gordon equation

" 1: /~~(2.27)
with the relativistic dispersion

- /(2.23)

TRAS ITIONJ RPE

We now intend to calculate in the framework of the model
derived in the last Section the effects of a strong laser field

,'. .. on measurable quantities like the spectrum of the emitted elec-
.~.~. trons and the lifetime of the nucleus. The transition amplitude
.- reads in first order of perturbation theory with respect to the

weak interaction

t: - :bs- -- < f"': /7/

The weak interaction is denoted by (gV) where V is a dimension-
less operator and g, is the coupling constant for beta decay,
g = 1.4xlO erg ctw- According to the Keldysh approximation
the electron wavefunction f'e is given by the exact solution
(2.21) or (2.18) for a free particle in a circularly polarized
field and the nuclear wavefunctions '1 ; and ?N,f are given by
the noninteracting solution (2.11) or (2.13), respectively. The

:.j
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uncharged neutrino is described by the plane wave (2.27) By
taking the wavefunctions of all charged particles consistently in
the same gauge, either the E or the R-gauge, we obtain in any
case

oftereatio• e -e to o n E (3.2)
A.,.-

If we choose the wavefunctions in the R-gauge we have to make use
-. " of the relation e f- eN i_ = - e in order to obtain Eq. (3.2).

For the energy balnhce ode has to take into consideration the
mass of the electron which is created during the beta decay.
Hence the value Q in Eq. (3.2) is given by

-- (3.3)

Since we are only interested in allowed nuclear beta decay we can
drop the factor exp{i(--eA+q)r/h} in the matrix element. The
physical justification for this approximation is the fact the
electron and the neutrino do not carry away any angular momentum
in an allowed beta decay so that the spatial dependence of their
wavefunctions can be neglected. In the nonrelativistic theory
this is a fair approximation. The nonrelativistic limit implies

.4. Ip- eA(t) I << mc, as discussed above. Since the spatial
integrion in the matrix element extends over the radius R of

the nucleus, which is of the order of some 10-13cm, the
exponential factor can be estimated for all nuclei by

Since we now dropped the factor exp ieAr/h, the discussion of the
preceding Section on the question of when to take which wave
function, viz. (2.11) or (2.13), appears obsolete. Nevertheless,
we have emphasized this point because it is important in
principle and of crucial significance in the case of forbidden
beta-decay [16, 32].

By the same arguments the space dependent factor exp(iqr/h)
in the neutrino wavefunction can be replaced by unity. If the

O. nuclear matrix element is abbreviated by

L



the transition amplitude for allowed beta decay takes the formr/4

V. ai 2 4 (W-,72cc 6 4-

With the help of the expansion (2.25) Eq. (3.4) can be rewritten
in the form

'T, t27

-7/4

This representation again allows for a simple interpretation in
terms of n photons emitted or absorbed by the electron.

For the calculation of the decay rate we only need the
transition amplitude (3.5) in the limit TA. wO:

T --> e a"a = -

. . 13 6)

With the help of the standard relation [22]

we obtain the transition rate per unit time

-4: . . . . . . • . . .o ° . . . . .• .• ,.. . . . . . % • % -. % - o % % % •- o. . . . -
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4-- *o7- (3.7)

Only diagonal terms n n' contribute to IF(T) 12 in the limit
T -- since the off-diagonal terms yield products of two delta
functions with different arguments. Die to reasons which will
become clear below it is convenient to introduce the dimension-
less quantity

Eq. (3.7) can then be rewritten in the form

S '/I / 2 '7 (3.8)

In the next step we will simplify the sum over the Bessel
functions. In high power laser fields the argument z of the
Bessel function can achieve values of 10 3 to 103 as discussed
above. Hence, up to 106 terms can contribute to the sum (3.8).
An excellent approximation for Bessel functions of large order n
and for z > Inl is Debye's asymptotic expansion [23):

The rapidly decreasing exponential tail of Jn(z) for Inl > z will
be neglected, i.e. we set Jn(z) = 0 for Inl > z. This approxima-
tion is only exact in the limit z . According to Eq. (2.24)
this corresponds to the classical limit h", 0. As long as z is a
large number this classical limit is well justified. Further-
more, after squaring Jn(z) we can average over the oscillations
in j 2 (z) since it is hardly possible in any experiment to
determine the intensity parameter v and therefore also z to such
an accuracy that the phase of the Bessel functions is precisely
defined. Also these rapid oscillations of J 2 (z) as a function
of n are a quantum feature C24]. This procedure then yields a
powerful approximation for the square of Liessel functions

?w.
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The e-function denotes the usual step function 8(x) = 1 for x > 0
and = 0 for x < 0.

%
Since we are not- interested in a particular term of Eq.

(3.8) with a fixed number n of transferred photons, but only in
the total effect of very many multiphoton terms, we car, replace
the sum in Eq. (3.8) by an integral. By inserting the approxima-
tion (3.9) into Eq. (3.8) and carrying out the n-integration we
obtain the transition rate per unit time in the quasiclassical
limit

:-
I--'~ 6-~i 310)

t, V Lo -

If we recall that z and n are proportional to (hw)- l we notice
that in the quasiclassical approximation, which applies in the
limit tiw << mc-, the transition rate w becomes independent of the
field frequency w. It depends on the external field only via the
intensity parameter v (2.23).

ALTERIATIVE DERIVATIONS OF THE QUASICLASSIC-L TRANSITION RATE

There are two further instructive and easy methods to derive
Eq. (3.10) which illustrate its classical character. In the
first part of the current Section we calculate the time integral
for the transition amplitude (3.4) with the help of the
stationary phase method [25] instead of expanding the integrand
in terms of Bessel functions. The method of stationary phase
approximates the integral over a rapidly oscillating function by
the contributions from the regions around stationary points to
the integrand [26]:

X. C T- X.

Here x is a large positive variable and f(t) a real function of
the real variable t, so that the integrand is rapidly oscillatingv unless f(t) is stationary. Hence the major contribution to the

.E,
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value of the integral arises from the vicinity of the points tn
at which f'(tn) = 0. The sum over n extends over all stationary
points in the interval [a,b]. The stationary phase method
becomes exact in the limit x- , i.e. for infinitely large
exponents. Hence the use of this approximation method for the
time integration in. Eq. (3.4) implies the transition to the
classical limit ri -' 0 (i.e. z - c) already in the transition
amplitude F(t).

In order to apply the stationary phase method to Sq. (3.4)
we first have to determine the stationary points tn of the
exponent of the integrand:

Co.s, € ( ,LY % 4- - )
ti CL

In order to obtain stationary points we find again the condition
Z2 > (no + Ejthw) 2 . We furthermore note that the second deriva-
tive of the exponent has the same form

- + - )

at all stationary points. Thus we obtain for the transition
amplitude in the semiclassical limit

__ - (4.1)

Cross terms from different stationaryZ points will once again not
contribute to the transition rate tF(T)L' since the phases at the
stationary points tn are randomly distributed for all practical
purposes so that the cross terms cancel each other in the limit
T We have two stationary points per time interval 2 r/u and
hence ,wT/-t stationary points in the entire integration region
[-T/2, T/2]. We thus find from counting all stationary points in

.. iF(T) 12 the transition rate per unit time

I.,
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This result is identical with the quasiclassical approximation

(3.10) of the Bessel function approach.

There is an even simpler argument leading to Eq.(4.2) which
is classical from the outset. We can write the transition rate
per unit time for the decay in the absence of the laser field as

where

)(4.4)

is the electron energy distribution function and E p, p2/2m the
kinetic energy. Of course, in the absence of the field the elec-
tron energy Eis, frspecified Q, a function of the neutrino
energy E., only. In the presence of the field the kinetic energy
of an electron is no longer conserved but time-dependent (cp. Eq.
(2.61)), so that

[e ° -.[..-

-2 (4.5)

4- ^r - 6)C ~OS(Cd 4-,

with P the conserved ccanonical ,momentum. We now assume that when
the field is switched on, Vfi in Eq. (4.3) is unaffected but the
electron energy distribution Pfre(E) is changed into

-4,4 . 2 r.
[%L',

L"L

-(4.6)
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This is the time average over the instantaneous electron energy
distribution. If we recall that

where the sum is over all zeroes xi of f(x), and notice that
Q-Ev-E(t) has two zeroes within to <t < to + 27/w, we find that

2(4.7)

agrees with Eq. (4.2). This procedure illustrates once again
that the approximation (3.9) for the Bessel functions as well as
the stationary phase method correspond to a purely classical
treatment of the electron-laser interaction.

By comparing Eqs. (4.4) and (4.6) we can already anticipate
a general feature of the electron energy distribution which will
be more extensively discussed in the next Section. Due to the
field, the kinetic energy

pre a

in Eq. (4.4) is replaced by ECt) of Eq. (4.5). Now, if
tla >Pfree', Ipi will be much larger than 'Pfree' in order
that

can be satisfied as prescribed by Eqs. (4.4) and (4.6). Hence,
for strong fields, we expect the electron energy spectrum to
extend to much higher energies.

ELECRN DISTRIBUTIONS

In order to obtain the angular distribution and the energy
spectrum of the emitted electrons the transition rate w has to be
integrated over the phase space of the neutrino and the electron.
The total decay rate 7 is given by

S.5
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.It is convenient to use polar coordinates for 
the momenta p and q

and to apply the dispersion relations (2.16) and (2.23) for the

electron and the neutrino. This yields

. ' ., ' .-

For the transition rate w in Eq. (5.1) we use the semiclassical

limit (3.10) which was shown to be an excellent approximation.
Since w (3.10) depends only on E. and via z and no on E and e the
integrals over e, 0 and are trivial in Eq. (5.1). After sub-
stituting E. by

'Y, 4-

r takes the form
F7

,c ',

We have two restrictions for the integration variable x which
have to be satisfied simultaneously: (i) n o < x, corresponding to
the condition of positive neutrino energy EV > 0, and (ii)
-z < x < z originating from the e -function. Therefore we have
to distinguish between three cases: (i) if no > z the total

% decay rate r vanishes; (ii) if -z < n0 
< z the x-integration

extends from no to z; (iii) if n o < -z the x-integration extends
from -z to +z. -Tis leads to the elementary integrals

--- k ( J ~- - /)a~

fc.&.: ->- )-.r . -.. = -, - -

The al ad e d)e o n t

The angle and energy distribution of the electrons then reads

. & -.oO :- :.
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Since no and z depend on E and ethe condition z > no, i.e.

TMC

yields the limits of allowed emission ancqles 8 and of possible
electron energies E. For E < Q - v2mc -/2 this condition is
always satisfied. But for higher energies electrons are only
emitted into a certain angular range. The limits for the
emission angle are for fixed energy E

m^ C-....

E-7 (5.3)

The limits for the electron energy can be obtained from the
condition sine < 1:

0 - (5. 4)
..



Figure 1 shows for the relativistic theory the possible (E,e)
values of the emitted electrons in a laser field with an inten-
sity parameter v = 0.5 for two examples. 18F decays via 6 decay
to 0 with a moderate energy release Q = 634 keV, H decays via
B decay to 3He with the very small energy release Q = 18.6 keV.
(Note that we defined Q as the mass difference between nuclei,
rot between neutral atoms). The solid line in Fig. 1 shows the
boundary of the integration area: on the left or inside the
solid line, respectively, we have the allowed (E, e) values. On
the right or outside this curve no = z, respectively, we have the
nonclassical regime with extremely few events which are neglected
in the present classical theory. Whereas Eq. (5.3) yields a
symmetric electron distribution around 6 = 900 with respect to
the laser beam axis, the relativistic calculation yields an
asymmetric distribution. Electrons at the high energy end of the
spectrum are mainly emitted in forward direction. The dotted
lines indicate a value of no/z > 1 up to which the Bessel
functions are already so extremely decreased that this area can-
not play a role in the nonclassical regime anymore. Nonclassical
corrections to Eq. (5.2) can only be due to (E,e) points
extremely close to the solid line. Furthermore, the dashed lines
in Fig. 1 show contours of constant ratios n 0/z< 1. The smaller
this ratio is at some point (E,e), the higher is the number of
events that contribute to d2 T/dEde at this point.

For the example 3H a laser field with v = 0.5 is already so
strong that the effective mass exceeds the Q value. For all

180
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Fig. 1. Area of allowed emission angle and energy (solid curve)
and contours of constant ratio n0 /z for a field inten-
sity j= 0.5 and for the nuclei (a) '8F and b) 1H. The
relativistic electron energy is scaled in units of irc2
E= (m2C4 + p2c2 2/ mc. These curves come from the

complete relativistic theory.

energies n 0 is then positive. This is in contrast to the
field-free situation where no is always negative. The given
combination of Q and v allows only configurations with no/zO0.83.
The value n o denotes the minimum numb~er of potons which the
electron has to absorb from the field. In this example the elec-
tron must absorb energy from the field since the energy release
of the nuclear decay alone is not sufficient to account for the

-effective mass of the electron in the field. Since no for all
(E,^) values is rather close to z, only relatively few multi-
photon terms contribute to d2 r/dFEd at one particular (E,:-)
point.

0 All these effects can also be seen in the spectrum of the
electrons. We obtain the energy distribution of the electrons by
inte -ting lzq. (5.2) numerically over e between the limits

* '*(5.3). Figure 2 shows the results of the corresponding relativ-
istic calculation, again for the two exairples 13 and 3H. A
similar plot can be found in Ref.- 27. With increasing f ield

* .intensity the electron distribution extends to much higher
energies. On the other hand, the maximum of the spectrum

:.,. .
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Fig. 2. Energy distribution of the electrons for different field
intensities for the nuclei a) F and b) 3 H. The rela-
tivistic electron energy is scaled in units of n& as in
Fig. 1, F-0 is related to the Q value of the decay by
E= 1 + Q/mc2, and Y denotes a constant factor of

dimension (energy x time). These curves are calculated
from the complete relativistic theory.

decreases with increasing v. The area under the curve, which
represents the total nuaer of emitted electrons and therefore
the lifetime of the nucleus, seems to be more or less constant
for the different field intensities. We shall investigate this
question in the next Section.

*In the 3H spectrum in -Fig. 2b we see again the effect of the
strong effective imass v'-mc'-/2 exceeding the Q-value of the reac-
tion. For sufficiently high ' 0-values the spectrum does not begin
at E =0 anymrore, but at some finite energy. This reflects again
the fact that the electrons from the low energy end of the
laser-free spectrum must absorb a considerable amount of pbontons
from the field in order to raise their effective mass, since the
available Q value is not sufficient.
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One possibility to obtain the total decay rate 1' and the
lifetime of the nucleus T J /P is the numerical integration of
Eq. (5.2) between the limits (5.3) for the angle and (5.4.) for
the energy. However, it is also possible to calculate
analytically from Eq. (3.10) by choosing another set of variables
for the electron momentum and anQther order of integration. The
dependence of z on (p + pi) suggests, for example, the
following set of variables

Q%, 'r C0>

in term~s of which

.?., NCLA LI -IIo

For the neutrino omentumq we use again polar coordinates. With
this choice for dp and d q and with the semiclassical transition
rate (3.10) the total decay rate r (51) reads after carrying out

* , fthe three trivial angular integrations

-~ (6.1)

After expressing z and no in terms of s and P3 the e-function
yields the following restrictions for the integration limits if
the integrations are carried out in the indicated order (first
ds, then dp 3 and finally dEhc

4- -$-l~

- 0The total decay rate can then be rewritten in the form

.
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The value of the integral

'is independent of the intensity parameter v, and so are the
limits of the remaining integrations over P3 and Ev . Hence,
after integration over ds the dependence on the external field

. drops out of the expression (6.2) for the total decay rate. This
means that in the quasiclassical limit the total decay rate r
is not affected by the external field, nor are the partial decay
rates dr/dP3, dr/dt and d r/dq. Field effects only show up in
dr/ds and in the related partial rates dF/dE, dr/de, dr/dpi,

.. dr/dp 2, etc.

The last two integrations in Eq. (6.2) over dp3 and dE. are
easily carried out. We then obtain for r the nonrelativistic
limit of the total decay rate of allowed nuclear beta decay in
the absence of an external field:

-7

- ____ ~(6.3)

Again, there is a simpler way to realize the field independence
of r in the classical limit: according to Eqs. (4.5-7)

- - 11 'I --,

t -- (6.4)
-4.-'""" A-,_ Y),"",, Joi, < c ( -& - 4
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where the integrations over t and p have been commuted. If we
now transform the integration variable p to p - eA(t), the field
dependence is entirely eliminated. Obviously, in order to
achieve this, it suffices already to integrate over the two com-
ponents of p which lie in the plane of A(t).

The relativistic theory also leads to the result that the
nuclear lifetime is unaffected by the external field. The
physical importance of the effective mass term v2 mc2/2 for thisresult should be stressed again. We recall that the effectivemass is due to the X2-term of the interaction Hamiltonian in the

R-gauge. If the field is strong enough so that the effective
mass exceeds the Q value of the decay emitted electrons must
absorb the energy difference from the field. We thus have two
competing processes: since the electrons absorb energy they have
a larger phase space and the nucleus should decay faster. On the

.1% other hand, due to the effective mass only those electrons are
emitted which absorb between no and approximately z photons. The
distribution of the photon absorption with respect to the photon
number n is given in the classical limit by the approximation
(3.9) for the Bessel functions or by the classical distribution
(4.6). With increasing v, i.e. with increasing phase space, the
minimum of no/z in the entire (E,e) plane approaches unity so
that the portion (z - no)z of photon absorptions that still
leads to decay becomes very small. In the limit of classical
electron field interaction these two effects, increasing the
phase space and overcoming the effective mass, cancel out each
other exactly.

In a different context, namely the hyperfine splitting of
atomic levels in a strong radio frequency field, the just men-
tioned cancellation has been noticed previously: by merely
replacing the electron mass m by the effective mass (m2+e2A-/c )'-
in the Hamiltonian, an effect was predicted which was not
corroborated by experiment [33]. It was later shown [34], that
in the long wave length limit this effect is cancelled by the
'.-term which was initially nalected. This is another example
for the interplay between the pA- and the A2- term. The argument
following Eq. (6.3) shows clearly that this cancellation is just
a consequence of the minimal coupling interaction.

However, one should keep in mind that the field-independence
of the nuclear lifetime holds only in the classical limit h - 0
for the electron-field interaction. This limit is well justified

O for all beta decaying nuclei in the presence of laser fields with
intensity v in the order of unity and with optical or longer
wavelengths. However, the quasiclassical limit breaks down for
fields with shorter wavelengths (x-ray regime) and for (ficti-

- .. tious) nuclei with tiny Q values Q << mc . In these cases the
parameter z which corresponds to the maximum number of absorbed
photons cannot be considered a large number anymore. The
classical approximation, however, holds only for multiphoton



transfers of very high order. The classical limit furthermore
breaks down for superintense fields when v >> 1. Then the
effective mass term becomes so large that the minimum value of
the parameter no, which corresponds to the minimum number of
absorbed photons, comes very close to z, i.e. there are no. . (E,)
configurations with. no << z anymore. In the Bessel function
procedure this imblies that (E,19) configurations beyond the
n= z border become important. For the stationary phase method

the case v > 1 means that higher order terms in the expansion
around the stationary points have to be taken into account.
These three ways to get away from the validity of the semiclassi-
cal limit will be demonstrated again in the next Section.

THE NONCLASSICAL REGIME

In order to calculate'-the quantum dffdcts7- of the elec-
tron-field interaction we have to attempt to calculate the total
decay rate analytically as far as possible without any approxima-
tions. We therefore start from- the exact" express ion (3.7) for
the transition rate per time in terms of Bessel functions and
choose again the variables (s, ,p?) for the electron momentum as
in the last section. The sum over the Bessel functions in Eq.
(3.7) cannot be carried out anymore. We choose the order of
integrations so that we avoid an integration over the Bessel
function. The three integrations over the angular variables are
trivial, as well as the integrations over the neutrino energy EV
and over p3~. We thus obtain an exact expression for the nuclear

* - lifetime in a laser field

-w-7• '.

(7.1)

•. .. *

The snation over n and the integration over s can be carried
out analytically. For this purpose the sum of the squared Bessel
functions has to be transformed in a proper way, and the calcula-
tion of the total decay rate r is somewhat lengthy 28].

However, there also exists a completely different approach
for the exact calculation of the total decay rate r in the
presence of an external field. It is possible to express the
field influence on r by an operator acting on the decay rate
r (6ee t eof the beta decay in the absence of the field [29].

- The lxact expression for the nonrelativistic rate c of allowed
beta decay reads



For circularly polarized fields the operator M has the form

= ~ (7.3)

As usual, these operators are defined by their power series

expansion

The coefficients c k are given by

.-.

2--

- kO

" Noticing that x occurs in Eq. (7.3) in combination with w as the'product x, we can simplify the operator onsiderably. The k-th
i~i! iterm of the operator IK applied to the free decay rate rf-re e

differs by the order (h W/Q) 2 f rom the (k-1) -th term. In thelimit h << Q it is therefore sufficient to take only the first
term k = t in M into account. Consistently also exp-i/h} can

then be cut off at Z = 1. To first order of (hw/Q) the total
.. decay rate is thus given by

C 5 -~; ~ Jee
(7.4)

The enhancement of the total decay rate due to the external field
is then to first order of (h /Q)

.4 .o-



p.'.*.~r = p(7.5)

Expressing the intensity parameter v by the critical field
strength Ec (2.23) 'the enhancement ca.n be written in the form

., , 'mi '

This result agrees with the nonrelativistic limit in Ref. 28. A4s
mentioned at the end of the preceding Section we can obtain a
considerable enhancement either for nuclei with very small Q
values Q << mc or for x-ray fields or for high field intensi-
ties v > 1.

S."Figure 3 shows the enhancement R (7.5) as a function of v
for a NA laser with hw =1.17 eV and for several 0-values. For

<< 2 s the enhancement already becomes very large for rela-

entively nerate field strengths. It should, however, be men-
tioned that the chosen 0 values are considerably smaller than the
Q values of any existing beta decaying nuclei. For H Eq. (7.5)
requires already v 4x10 3 for a Nd laser in ordeal to obtain
R = 2, corresponding to a field strength Ec of 1.2xl014 V/cm

1000
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Fig. 3. Enhancement R of the total decay rate r due to an
external field of wavelength X 1.06 um as a function
of the intensity parameter v for different Q values.
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It is interesting to note that in the relativistic theory in
first order of (hw/mc 2 ) the enhancement R still has the form
(7.6). Just the function r which depends only on the Q value of
the decay has to be replaced by a relativistic expression [28].
This implies that the field dependence of the enhancement R is
fairly well described by the nonrelativistic theory in Eqs. "7.5)
or (7.6) for all field parameters. Hence the nonrelativistic
theory yields also for v >> 1 a good estimate of the total decay
rate which justifies its use for Fig. 3. Furthermore, the non-
relativistic total decay rate also gives for the entire range of
0Q-values of realistic nuclei approximately the correct answer,
i.e. it also holds for electron energies E >> mc 2. We can see
this from Fig. 4 which compares the Q-dependent factor of Eq.
(7.6) in the relativistic and in the nonrelativistic theory. For
Q/mc2 < 0.1 both curves of ri are identical and up to 0/inc k. 100
they never differ by more than a factor of 4. This proof that
the nonrelativistic theory yields reliable enhancements even for
v >> 1 and Q >> mc2 is the physical justification for its use
throughout these lecture notes. However, there are, of course,
measurable relativistic effects in the angular and in the energy
distribution of the electrons and polarization effects are not at

*-.all accounted for by the nonrelativistic treatment.

*I% %, -101 ...
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Fig. 4. Q-value factor n (7.6) in the Dirac theory (solid curve)
__, 'and in the Schrodinger theory (dashed line) as a
4% function of Q/mc 2 = C0 - 1.
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SUM.RY

We have shown that the modification of the beta-decay life-
.. time due to an external electromagnetic field is a pure quantum

effect. For presently feasible laser fields the interaction
between the emitted electron and the field is well described by
the classical limit h - 0, so that the nuclear lifetime is not
affected. In order to obtain appreciable quantum effects in
nuclear beta de ays either (i) the photon energy has to be of the
order of the Q value of the decay [30] or (ii) the field strength
must be comparable with the critical field strength. We have
furthermore seen in Fig. 4 that the modification of the lifetime
is to a fair approximation a nonrelativistic quantum effect.
Relativistic quantum corrections are small for all realistic
nuclei.

Crucial for the result that the classical electron-field
interaction does not give rise to a change in the nuclear life-
time, is the interplay between the pA-term of the interaction
which is responsible for the energy exchange between the electron
and the field, and the 92-term which contributes to the effective
mass. For intense field problems the p-term is very important
and cannot be neglected as it is often done in quantum optics.

The result found here contradicts directly Refs. 10 and 14,
which predicted a considerable enhancement of free neutron and
nuclear beta decay rates with lasers available at present and
casts doubt on Refs. 13 and 15 in which similar enhancement for Y
decay and forbidden beta decay are obtained. We can state that
the numerical results in all of these four publications are (due
to completely different reasons) incorrect. In Refs. 10 and 14

the "enhancement" of the decay rate is due to a careless handling
of sums over Bessel functions [25] as was discussed in these

"a lecture notes. In Ref. 13 the underlying physical situation is
not correctly modeled [31] and the calculations in Ref. 15 are
misguided by a wrong interpretation of the non-interacting
nuclear wave function (2.13) and include an algebraical error,
after whose correction the proposed enhancement of forbidden
decay rates disappears [32]. Obviously, Nature does not want her
more elementary constituents to be tampered with by inadequate

"- means.
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kinetical momentumn - eA. In order to double check, we notice from Eq. (3)

that the form factor satisfies this requirement. The function E'(u) can be

rewritten as

E'(u) E - Ei + q +p 0 - 2 (po pZ) (2p(u) -(u))

m2 + - eA(u))
2

Ef E. q0  P + (Pf i 2 (P-z) +  2(p0 p PZ)  (7)

where we used the mass shell condition (po - P)(p0 + pj = m2 + P" Hence 1A2

depends only on the kinetical momentun, as it should.*

We note in passing that the same holds true if the electron satisfies the

Dirac equation. The Volkov solution is then augmented by the spinor

{I+e Up
2~pn p

which, since u satisfies (y - m)u = 0, can be rewritten as

C1I - eA m))u2pn p

* Actually, we have defined p as the mmentum of the electron outside of the

field rather than the cancnical momentLm. Let us denote the latter for the
moment by P.. We conclude from the fact that the external field depends only
on u, that the components -PoT and Pc, - P., are conserved. In particular,
they do not change when the field, as a function of u, is turned on or off.
Hence, inasmuch as these components are concerned and only these do occur, we
can identify the asymptotic with the canonical momentum.

, °.. . ....... . . •
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Now, in order to get the total decay rate, the differential rate III2 has

to be integrated over the momenta of the decay products. If we change the

integration variable from p to p- eA(u) and commute the integration over p with

that one over u, the dependence of the external field is entirely eliminated.

Let us compare the preceding argument with our earlier note regarding the

decay of a neutral free par u.4cle. Th2z. only difference lies in the fact that in

the latter case the integral over space could be explicitly carried out yielding

a delta-function as the expression of momentum conservation. In the present

case, owing to the presence of the nuclear wave functions, this was no longer

possible and we were left with the form factor (4). The decisive point of the

argument, the dependence of the instantaneous decay rate on the kinetical

momenta, is exactly the same in both cases.

The above procedure depends crucially on the fact that we were able to

write the total rate, within the quasiclassical approximation, as an intearal

over an instantaneous rate, as represented in Ea. (6). We expect that this

approximation will break down as soon as the external field is so strong that

the change in the kinetical imomentum during the decay time t is comparable with

the electron rest mass, viz.

A(p - eAt) E (8)

From the uncertainty relaticn we estimate - t ih/Es with E = E. - E the nuclear
i f

energy release, so that we expect our previous considerations to apply as long

[ ias
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In fact, calculated enhancements of allcwed F-91 !7s well as forbidden [6] nuclea--r

beta-decay are proportional to (m/E0
3 IIE .) in rough agreem~ent wit'.- t:-e

hand-waving estimate (9). Tob give an explicit example we obtain for the first

forbidden decay of 90Sr in the presence of a radiofrequency field with

=6x10 i.3 and a wave length of X = l00m an enhancement of 2xlO-2 4, i.e. zeroD

for all practical purposes in agreement with our above argument. In c-rltrast,

in Ref. 2 a value of the order of unity is given.

To sunmmarize, we have shown via a very simple, general and fully

relativistic argument that nuclear b;. a-decay, forbidden or not, car-not be

* * enhanced by experimentally feasible radiation fields. The situation is

particularly disillusioning for the radio frequency fields with

IE/Et 1012 which were considered in ILet. 2. It is differe!n: for

high-intensity x-ray lasers which are nearly rescnant with r~l~~o

differences [10], since in this case the interaction betwecn the r-:'_:-us 1._

field is of paramount importance.

I,..
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